
Submitted 25 August 2016
Accepted 12 December 2016
Published 25 January 2017

Corresponding author
Johan Eklöf, johan.eklof@su.se

Academic editor
Richard Taylor

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj.2906

Copyright
2017 Eklöf et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Size matters: relationships between body
size and body mass of common coastal,
aquatic invertebrates in the Baltic Sea
Johan Eklöf1, Åsa Austin1, Ulf Bergström2, Serena Donadi1,3,
Britas D.H.K. Eriksson4, Joakim Hansen3 and Göran Sundblad5

1Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
2Department of Aquatic Resources, Swedish University of Agricultural Sciences, Öregrund, Sweden
3Baltic Sea Centre, Stockholm University, Stockholm, Sweden
4Groningen Institute for Evolutionary Life-Sciences GELIFES, University of Groningen, Groningen,
Netherlands

5Aquabiota Water Research, Stockholm, Sweden

ABSTRACT
Background. Organism biomass is one of the most important variables in ecological
studies,making biomass estimations one of themost common laboratory tasks. Biomass
of small macroinvertebrates is usually estimated as dry mass or ash-free dry mass
(hereafter ‘DM’ vs. ‘AFDM’) per sample; a laborious and time consuming process, that
often can be speeded up using easily measured and reliable proxy variables like body
size or wet (fresh) mass. Another common way of estimating AFDM (one of the most
accurate but also time-consuming estimates of biologically active tissue mass) is the use
of AFDM/DM ratios as conversion factors. So far, however, these ratios typically ignore
the possibility that the relative mass of biologically active vs. non-active support tissue
(e.g., protective exoskeleton or shell)—and therefore, also AFDM/DM ratios—may
change with body size, as previously shown for taxa like spiders, vertebrates and trees.
Methods. We collected aquatic, epibenthic macroinvertebrates (>1 mm) in 32 shallow
bays along a 360 km stretch of the Swedish coast along the Baltic Sea; one of the largest
brackish water bodies on Earth. We then estimated statistical relationships between
the body size (length or height in mm), body dry mass and ash-free dry mass for 14
of the most common taxa; five gastropods, three bivalves, three crustaceans and three
insect larvae. Finally, we statistically estimated the potential influence of body size on
the AFDM/DM ratio per taxon.
Results. For most taxa, non-linear regression models describing the power relationship
between body size and (i)DMand (ii) AFDMfit the datawell (as indicated by lowSE and
high R2). Moreover, for more than half of the taxa studied (including the vast majority
of the shelled molluscs), body size had a negative influence on organism AFDM/DM
ratios.
Discussion. The good fit of themodelled power relationships suggests that the constants
reported here can be used to quickly estimate organism dry- and ash-free dry mass
based on body size, thereby freeing up considerable work resources. However, the
considerable differences in constants between taxa emphasize the need for taxon-
specific relationships, and the potential dangers associated with ignoring body size.
The negative influence of body size on the AFDM/DM ratio found in a majority of
the molluscs could be caused by increasingly thicker shells with organism age, and/or
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spawning-induced loss of biologically active tissue in adults. Consequently, future
studies utilizing AFDM/DM (and presumably also AFDM/wet mass) ratios should
carefully assess the potential influence of body size to ensure more reliable estimates of
organism body mass.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Ecology, Marine Biology, Zoology
Keywords Estuary, Biometry, Infauna, Submerged aquatic vegetation, Isometric scaling,
Length:weight relationship, Epifauna, Allometry, Seagrass, Weight

INTRODUCTION
Organism biomass is inarguably one of the more important variables in ecology, playing
a central role in studies ranging from ecophysiology and community and food web
regulation, to whole-ecosystem metabolism (e.g., Enquist & Niklas, 2001; Gruner et al.,
2008; Perez-Harguindeguy et al., 2013). As a consequence, to accurately estimate organism
biomass constitutes one of the most common and important tasks in ecological studies.

Small invertebrates retained on 0.5–1 mm sieves (hereafter ‘macrofauna’) make up a
major part of animal density, diversity and biomass in many ecosystems; e.g., insects and
arachnids in terrestrial ecosystems; epibenthic, aquatic crustaceans, echinoderms and mol-
luscs in stands of aquatic vegetation; and infaunal (sediment-dwelling) worms, crustaceans
and molluscs in marine sediments. Macrofauna biomass is typically reported as dry- or
ash-free dry mass per unit area (e.g., g per m2), which requires observers to repeatedly
identify, sort, dry and weigh individual or pooled organisms; a time-consuming, expensive
and tedious process. Many studies have shown that more easily measured proxy variables
scale predictably with dry mass and therefore can be used to speed up biomass estimations;
e.g., wet (fresh) mass (Brey, Rumohr & Ankar, 1988; Ricciardi & Bourget, 1998; Brey et al.,
2010) and body size, based on either exact length measurement (Smock, 1980; Frithsen,
Rudnick & Doering, 1986; Sabo, Bastow & Power, 2002) or retention on sieves of certain
mesh sizes (Widbom, 1984; Edgar, 1990; Casagranda & Boudouresque, 2002). While wet
mass can be a very good proxy (see e.g., Ricciardi & Bourget, 1998), we—as others before—
argue that body size (e.g., length) holds several advantages, and lacks several disadvantages
associated with wet mass estimations. First, ecological theory supported by empirical data
suggest body mass scales predictably with length in the form of power relations (Smock,
1980; Sabo, Bastow & Power, 2002). Second, while freezing/thawing and fixation in con-
servation liquids (e.g., EtOH or formalin) can affect both organism wet mass (Howmiller,
1972; Mason, Lewis & Weber, 1983; Leuven, Brock & van Druten, 1985) and length
(Hjörleifsson & Klein-MacPhee, 1992; Kapiris, Miliou & Moraitou-Apostolopoulou, 1997),
wet mass estimations are also very sensitive to exactly how specimens are blotted, cen-
trifuged (to remove excess water), and exposed to air and light before and during weighing
(Howmiller, 1972;Mason, Lewis & Weber, 1983; Leuven, Brock & van Druten, 1985). As size
estimations do not require blotting, they are less sensitive to observer error, and also faster to
perform. Third, body size (e.g., length or height) estimations canmore easily be automated,
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using e.g., image analysis software (Paavo et al., 2008; Mallard, Le Bourlot & Tully, 2013),
to rapidly process multiple individuals at a time.

In benthic ecology, ash-free dry mass (hereafter ‘AFDM’, in the older literature
sometimes called ‘ash-free dry weight’ or simply ‘AFDW’) is often regarded as the most
accurate predictor of macrofauna biomass, as it only includes biologically active tissue.
Since AFDM estimations require the incineration of dried samples in a furnace at high
temperature, adding considerable time and costs to analyses, many studies have reported
howAFDM scales with estimations of wet- and drymass, usually in the formof simple ratios
as ‘conversion factors’ (e.g., AFDM/DM, in %) (Rumohr, Brey & Ankar, 1987; Ricciardi
& Bourget, 1998). However, these ratios typically ignore the possibility that the relative
mass of biologically active vs. non-active support tissue (e.g., protective exoskeleton or
shell)—and therefore the AFDM/DM ratio—may change with macrofauna body size, as
previously shown for disparate taxa like spiders (Andersen, 1979), vertebrates (Miller &
Birchard, 2005) and trees (Niklas, 1995). This issue is important not only for obtaining
accurate biomass conversions and estimations, but also for understanding how organismal
investment in one type of structure may limit or constrain investment in other structures
across ontogenetic development stages (Lease & Wolf, 2010).

Here we estimate and report relationships between body size, dry mass and ash-free dry
mass for 14 of the most common aquatic, epibenthic invertebrate taxa found in shallow,
vegetated habitats of the central Baltic Sea; one of the largest brackish water bodies on Earth.
For each taxon we also assess whether the ash-free dry mass/dry mass ratio changes with
body size. Our aim is to provide simple yet reliable size-based relationships that can be
used to rapidly estimate organism body mass and, ultimately, biomass per sample.

METHODS
Study area
The Baltic Sea is a 415,000 km2 large marginal sea situated in northern Europe (53–66◦N;
10–30◦E). A main feature is the presence of strong horizontal and vertical gradients in
salinity, temperature and oxygen, that also undergo considerable temporal (e.g., seasonal)
fluctuations (Voipio, 1981). The Baltic Sea is evolutionary very young (ca 6,000 years), and
the shallow coastal areas have since the last glaciation been colonized by amixture ofmarine,
freshwater and brackish organisms, including crustaceans, gastropods, bivalves, poly-
chaetes, hirudineans, nemerteans and insect larvae (Hansen, Wikström & Kautsky, 2008).
As many marine and freshwater organisms in the Baltic Sea live near their physiological
tolerance limits, they grow slower and smaller than in their original environment; e.g., the
blue mussel Mytilus edulis (Tedengren & Kautsky, 1986). As a consequence, their size
ranges—but also size:mass relationships and, potentially, AFDM/DM ratios—could differ
from those reported for conspecifics in marine or freshwater areas (Rumohr, Brey & Ankar,
1987). An estimate of the effect of salinity on size:mass or DM:AFDM relationship was
beyond the scope of our study, but our results could be compared to relationships in
marine populations of the same taxa, if sampled and measured in the same way.
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Field sampling
During summer (May–Aug) 2014 we collected aquatic invertebrate macrofauna (>1 mm)
in 32 shallow bays situated along a 360 km stretch of the central, Swedish Baltic Sea coastline
(Fig. 1). The salinity in the area is generally low (ca. 5–7 psu) but fluctuates strongly with
freshwater runoff and upwelling events. In each bay, a snorkeler sampled submerged aquatic
vegetation and epibenthic macrofauna in 3–8 randomly selected stations (>30 m apart), by
gently placing a 20 × 20 cm frame (with a 1 mm-mesh bag attached) on the sea bed, and
collecting all organisms (aquatic vegetation and associated invertebrates) found above or
on top of the sediment surface. The bag content was immediately transferred to a plastic
bag, which was kept cold on ice until frozen (−20 ◦C), in most cases within 1–3 h.

Body size estimations
Following thawing in room temperature, we identified intact invertebrate organisms to the
highest taxonomic resolution feasible using standard literature. For the 14 most common
taxa we then selected and measured the body size of 12–459 individuals per taxa (3,220
individuals in total), chosen to capture the full range of body sizes found across the 32 bays.
The taxa included five gastropods (Theodoxus fluviatilis, Hydrobia spp., Radix balthica,
Potamopyrgus antipodarum, Bithynia tentaculata), three bivalves (Mytilus edulis, Limecola
(Macoma)) balthica and Cardidae spp. (numerically dominated by Parvicardium
hauniense), three crustaceans (Amphibalanus improvisus, Idotea spp., Gammarus spp.) and
three insects (larval stages of Chironomidae spp., Agraylea spp. and Phryganeidae spp.) (see
also Table 1). Body size (to the nearest 1mm)wasmeasured (based on standard procedures;
Hayward & Ryland, 1995) as; (i) gastropod height along the central shell axis, (ii) bivalve
length from anterior to posterior side, (iii) total length of Gammarus and Idotea spp. from
tip of rostrum to last urosome, (iv) body width for Amphibalanus improvisus, and (v) total
length of insect larvae from end of head to last segment. A higher size accuracy is definitely
possible (e.g., to 0.1 or 0.01 mm using calipers or stereo lenses), but as most studies
utilizing this type of data (including ours) will depend on 1000s of length measurements,
the accuracy chosen was a realistic trade-off between time and precision.

Estimations of dry- and ash-free dry mass
Following size estimations, the measured individuals were transferred to pre-dried and
-weighed (nearest 0.0001 g) porcelain crucibles. For most size classes (except for very large
and rare individuals),multiple individuals were typically pooled into the same crucible. This
step underestimates actual variability in bodymass between individuals, butwas necessary as
the low individual body masses (particularly AFDM) were near or below the reliable
detection limit of the scale. We included multiple estimations of the same sizes, so that the
number of biomass estimations (N ) ranged from 10 to 42 per taxa. Samples were then dried
at 60 ◦C for >48 h (until constantmass), and cooled to room temperature in a desiccator be-
fore weighing. To estimate ash-free drymass, the crucibles were then transferred to amuffle
furnace, incinerated (550 ◦C for 3 h), cooled and weighed again. Ash-free dry mass was
calculated as dry mass minus ash mass.
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Table 1 Results of regression analyses estimating (i) the non-linear power relationship between body size and dry mass (DM) and (ii) ash-free dry mass (AFDM),
(iii) the mean± 1SE AFDM/DM ratio (in %), and (iv) the linear relationship between body size and AFDM/DM ratio (in %), for 14 macroinvertebrate taxa in shallow
coastal areas of the Baltic Sea. Letters within parentheses after taxa names denote classes.

Body size vs. DM Body size vs. AFDM AFDM/DM Body size vs. AFDM/DM

Taxon N α± SE β± SE R2 α± SE β± SE R2 Mean%± 1 SE Intercept± SE Slope± SE R2

Bithynia tentaculata
L. (G)

25 0.598± 0.484ns 2.117± 0.351*** 0.847 0.479± 0.511ns 1.36± 0.472** 0.668 19.133± 2.207 33.162± 3.878*** −1.91± 0.452* 0.424

Hydrobia spp. (G) 24 0.239± 0.041*** 2.134± 0.095*** 0.952 0.079± 0.029* 1.441± 0.22*** 0.758 13.737± 1.155 19.791± 2.855*** −0.633± 0.715* 0.155

Potamopyrgus
antipodarum Gray (G)

17 0.479± 0.511ns 1.360± 0.472** 0.919 0.021± 0.012ns 2.447± 0.395*** 0.898 16.051± 1.399 6.063± 4.616ns 2.653± 1.180* 0.202

Radix balthica L. (G) 20 0.137± 0.035** 2.355± 0.115*** 0.956 0.046± 0.018* 2.119± 0.177*** 0.906 27.087± 2.233 35.338± 3.558*** −1.794± 0.650* 0.258

Theodoxus fluviatilis
L. (G)

29 0.221± 0.065** 2.683± 0.148*** 0.9492 0.015± 0.006* 2.915± 0.194*** 0.912 13.044± 1.083 18.52± 2.396*** −0.242± 0.494* 0.159

Cardidae spp. (B) 33 0.134± 0.094ns 2.848± 0.347*** 0.924 0.014± 0.013ns 2.806± 0.486*** 0.879 12.358± 0.852 18.075± 1.468*** −0.429± 0.325* 0.364

Limecola balthica L. (B) 18 0.069± 0.024* 2.820± 0.134*** 0.991 0.001± 0.002ns 3.479± 0.673*** 0.92 12.717± 1.934 21.429± 2.98*** −0.264± 0.372* 0.383

Mytilus edulis L. (B) 24 0.030± 0.015* 2.933± 0.153*** 0.991 0.006± 0.003* 2.844± 0.147*** 0.978 14.189± 0.504 13.162± 1.044*** 0.078± 0.069ns 0.011

Amphibalanus
improvisus Darwin (C)

13 0.314± 0.205ns 2.515± 0.289*** 0.976 0.036± 0.022ns 2.289± 0.276*** 0.961 8.939± 0.550 11.044± 1.064*** −0.397± 0.179* 0.246

Gammarus spp. (C) 37 0.047± 0.032ns 2.111± 0.265*** 0.926 0.033± 0.028ns 2.05± 0.32*** 0.863 58.966± 1.519 63.062± 2.616*** −0.389± 0.307ns 0.017

Idothea spp. (C) 42 0.001± 0.001ns 3.592± 0.200*** 0.949 0.001± 0.001ns 3.850± 0.249*** 0.919 61.505± 1.659 66.183± 3.457*** −0.550± 0.358ns 0.032

Agraylea spp. (I) 13 0.001± 0.002ns 3.410± 0.721** 0.820 0.001± 0.002ns 3.432± 0.769*** 0.833 85.967± 3.769 88.893± 7.725*** 0.570± 1.277ns −0.097

Chironomidae spp. (I) 38 0.014± 0.016ns 1.383± 0.290*** 0.600 0.008± 0.006ns 1.544± 0.321*** 0.533 79.307± 2.643 78.633± 6.947*** 0.070± 0.688ns −0.027

Phryganeidae spp. (I) 10 0.001± 0.001ns 3.176± 0.649*** 0.746 0.001± 0.001ns 3.207± 0.611*** 0.789 91.851± 2.137 86.64± 3.558*** 0.382± 0.185ns 0.290

Notes.
G, Gastropoda; B, Bivalvia; C, Crustacea; I, Insecta (larvae); α and β, normalization and scaling constant for power equations, respectively.

nsp< 0.05.
*p< 0.05.
**p< 0.01.
**p< 0.001
Values in bold mark those significant (at α= 0.05). Note: R2 were derived from linear log–log models.
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Figure 1 Maps of Scandinavia (small image) and the sampling area. Filled circles mark the position of
the 32 sampled bays. Numbers along the x- and y-axis are longitude and latitude, respectively.
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Statistical analyses
We estimated taxon-specific body size:body mass relationship using non-linear regression
in the form of the power equation:

body mass=α× sizeβ

where body mass is the individual mass (mg DM or AFDM), size is the body size (length-
/height, in mm), α is a normalization constant, and β is the scaling constant. Body mass
typically scales with size in a power relationship, and initial data exploration showed that
power equations provided a superior fit compared to linear, log or exponential relationships.
As regression coefficients (R2) are an inadequate measure of fit for non-linear regression
models (Spiess & Neumeyer, 2010), we report SE for α and β. However, for the sake of
simplicity we also estimated the linear log–log relationship between body size and biomass,
and report the R2 for those models (see e.g., Lease & Wolf, 2010).

For each taxonwe also calculated themean (±1 SE)AFDM/DMratio (in%); a commonly
used conversion factor in macroinvertebrate studies (see e.g., Ricciardi & Bourget, 1998).
We then used linear regression to test whether body size (in mm) affected the AFDM/DM
ratio. Prior to analyses we checked assumptions of normality (by plotting predicted vs.
observed quantiles) and homoscedasticity (by plotting predicted vs. observed residuals).
All analyses were conducted in R v. 3.2.3 (R Core Team, 2016).

RESULTS
Relationships between body size and individual biomass
The relationships between body size (mm), individual dry mass (mg DM) and ash-free dry
mass (mg AFDM) for all 14 taxa are displayed in Figs. 2A–2H, and the parameters (and their
fit) are presented in Table 1. For most of the taxa, body size was a very good predictor of
individualDM, as demonstrated by low SE andR2 near 1. Themodel fits were slightly poorer
for the three insect taxa (R2

= 0.60–0.82) and the gastropodBithynia tentaculata (R2
= 0.85)

than for the other ten taxa. For amajority (12 out of 14) of the taxa, the scaling constants (β)
were well above 2 (2.110–3.590). The exceptions were the small gastropod Potamopyrgus
antipodarum and chironomid larvae, which had constants closer to 1 (β = 1.368 and 1.383,
respectively).

Body size was also a very good predictor of AFDM, even though model fits (based on
SE and R2) were slightly poorer than for DM (Table 1). Just as for DM relationships, the
model fits (based on SE and R2) were best for gastropods, molluscs and crustaceans. The
scaling constants (β) were for most taxa quite similar to those reported for the DM
relationships, with the exception of a higher constant for P . antipodarum (β = 2.447) and
a lower constant for Bithynia tentaculata (β = 1.360).

Influence of organism body size on AFDM/DM ratios
The AFDM/DM ratios (mean % ± SE) per taxa are also presented in Table 1. As expected,
there were consistent differences between the four major taxonomic groups studied, with
low AFDM content in bivalves and gastropods (12–27%), who’s calcium carbonate shell
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Figure 2 Best-fitting relationships between body size (length or height, see ‘Methods’) and (A–D) dry mass (mg. DM), (E–H) ash-free dry mass
(mg. AFDM) and (I–L) AFDM/DM ratio (% AFDM), for 14 taxa—five gastropods, three bivalves, three crustaceans and three insect larvae—
sampled in coastal areas of the central Baltic Sea. For model parameters and estimates of fit, see Table 1.

makes up the major part of whole-body biomass, to higher AFDM content in chitin-shelled
crustaceans (ca 60%), and the highest content in insect larvae (86–92%).

Results of simple linear regression showed that formore than half (8 out of 14) of the taxa
surveyed, body size clearly affected the AFDM/DM ratio (Table 1 and Figs. 2I–2L). For four
out of five gastropods, two out of three bivalves, as well as the sessile, calcite-shelled crus-
taceanAmphibalanus improvisus, theAFDM/DMratio decreased linearlywith body size. For
the small gastropod Potamopyrgus antipodarum body size instead had a positive influence
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on AFDM/DM. However, the P. antipodarum size range was very narrow (2–4 mm) and
the intercept was not different from 0 (Table 1), suggesting a relatively poor model fit.
Moreover, there was no size effect found in the bluemusselMytilus edulis (Table 1). Finally,
in contrast to the size effects found for most of the hard-shelled molluscs, there was no
influence of body size on AFDM/DM in any of the chitin-shelled crustaceans or insect
larvae (Table 1 and Figs. 2I–2L).

DISCUSSION
Estimating organism biomass is one of the most common, important but also resource-
consuming tasks in ecological work, particularly when it comes to small-bodied, highly
abundant and diverse macroscopic invertebrates. Many previous studies have shown that
more easily measured variables like invertebrate wet (fresh) mass (e.g., Ricciardi & Bourget,
1998) or body size (e.g., Smock, 1980) can be used as proxies to reliably predict both the dry-
and ash-free dry body mass, thereby simplifying and speeding up biomass estimations.
Here, we first complement this literature by reporting how body mass scales with body size
for 14 of the most common epibenthic invertebrate taxa found in shallow coastal areas of
the Baltic Sea. Moreover, we demonstrate that for a majority of the studied molluscs, the
ratio between organism dry- and ash-free dry mass—an often-used conversion factor (e.g.,
Rumohr, Brey & Ankar, 1987; Ricciardi & Bourget, 1998)—decreases predictably with body
size. Thus, our results can be used to quickly estimate the biologically active biomass of
individual organisms based on their size, and when combined with density data, accurately
estimate biomass per unit area.

Body size as a proxy for dry- and ash-free dry mass
For a majority of the studied taxa, body size was a good predictor of both dry mass and ash-
free drymass. Themodel fits were slightly poorer for ash-free drymass (AFDM);most likely
a consequence of the fact that even thoughmultiple individuals of the same sizewere pooled,
the low individual AFDM of many organisms (in the vicinity of 1 mg) challenged the accu-
racy of the scale. Comparisons between the 14 taxa studied (Table 1) show that particularly
within the gastropods and crustaceans, the scaling (β) constants differ quite substantially
between taxa (see the different slopes in Fig. 2 and β coefficients in Table 1). These differ-
ences emphasize the need for taxon-specific relationships to accurately predict biomass,
and the potential dangers in either ignoring body size or substituting relationships between
taxa. Consequently, our power equations (Table 1) can be used in a simple yet reliable way
to estimate organism dry- or ash-free dry mass based on standard body size measurements.
Future studies should ideally also assess how these relationships vary in time and space
(e.g., over seasons), for even more accurate biomass estimations. Size-based biomass
estimations are likely to speed up laboratory work considerably; for example, Casagranda
& Boudouresque (2002) showed that sieve-based size estimations speeded up estimations of
body biomass of the gastropodHydrobia ventricosa by 20–30 times. Consequently, our size-
based estimations of invertebrate biomass are likely to free up considerable work resources
(time, man-power, money) that can be used to e.g., collect and process more samples.
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The influence of body size on AFDM/DM ratios
For most of the taxa with a calcium-carbonate (molluscs) or calcite shell (the barnacle
Amphibalanus improvisus), we found a significant negative influence of body size on the
AFDM/DM ratio; a commonly reported and often-used conversion factor in macrofauna
studies (e.g., Rumohr, Brey & Ankar, 1987; Ricciardi & Bourget, 1998). In other words, the
proportional mass of biologically active vs. non-active tissue (shell, hard mouth parts, etc.)
decreased with body size. There are at least two possible and complementary explanations
for this relationship. First, while the rate of growth in length of mollusc shells typically
decreases with age, new shell layers are consistently added on a yearly basis (Negus, 1966).
This results in increasingly thicker, and therefore disproportionally heavier, shells with
mussel length, and a higher shell:tissue mass ratio. Second, our sampling was conducted
during summer; a season when a majority of adult molluscs (here represented by the
larger individuals per taxa) most likely had spawned and temporarily lost a considerable
proportion of their biologically active tissue (Kautsky, 1982). The slopes of the significant
regressions (Table 1, median =−1.26) suggest that failing to incorporate the potential
influence of body size can strongly reduce the accuracy of AFDM estimations based on
dry mass (and presumably also wet mass), particularly if there is considerable variability in
body size in the samples. The somewhat surprising lack of size influence in the common
blue musselMytilus edulis was not investigated in detail, but could be caused by (i) the lack
of small shell-crushing mussel predators in the area (e.g., crabs), who otherwise are known
to trigger thicker mussel shells (Freeman, 2007), and/or (ii) the relatively low salinity,
which causes the small, osmotically stressed M. edulis to invest considerably more energy
into osmosis and soft tissue production, than in thicker shells (Kautsky, Johannesson &
Tedengren, 1990).

In contrast to the results formolluscs, therewas no size effect onAFDM/DMratios for the
chitin-shelled insects and crustaceans. These results fit well with those reported in previous
studies, for example of terrestrial insects, for which exoskeletal chitin scales isometrically
(1:1) with body size (Lease & Wolf, 2010). In summary, our results suggest that body size
can play an important but hitherto underestimated role when estimating organism AFDM
based on dry (and possibly, wet) mass, particularly for shelled molluscs.

CONCLUSIONS
Using samples of epibenthicmacroinvertebrates collected in 32 shallow bays along a 360 km
stretch of the Swedish Baltic Sea coast, we show that for 14 of themost commonmacrofauna
taxa, organism body size scales predictably with individual dry mass and ash-free dry mass
in the form of power relations. The good model fits suggest the taxon-specific equations
reported here can be used to predict individual biomass based on organism size, thereby
speeding up estimations of macrofauna biomass. Moreover, for the vast majority of the
molluscs studied, we find a negative relationship between body size and AFDM/DM ratio;
a commonly used conversion factor in macrofauna studies. Consequently, future studies
utilizing AFDM/DM ratios should carefully assess the potential influence of body size and
spatial–temporal variability, to ensure reliable biomass estimations.
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