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0 PREFACE 

This report is a BALANCE product and focuses on evaluation of remote sensing meth-
ods as a tool to characterise shallow marine habitats. The report has been compiled by: 

• Sandra Wennberg and Ulrihca Malmberg from Metria Miljöanalys, P.O. Box 241 
54, SE-104 51 Stockholm, and 

• Göran Sundblad, Alfred Sandström, Ulf Bergström and Peter Karås from Swedish 
Board of Fisheries, Institute of Coastal Research, P.O. Box 109, SE-74071, Öre-
grund, Sweden. 

This report is the final report completing BALANCE Interim Report no. 5 “Remote 
sensing as a method to characterise shallow coastal habitats in the Baltic Sea”. The 
study is a part of BALANCE is co-financed by the Swedish National Space Board, the 
Swedish Board of Fisheries (SBF) and the Swedish Environmental Protection Agency 
(SEPA). The majority of the evaluations, interpretations and analyses of remote sensing 
images are performed by Metria. The output from the study will form an important part 
of Work Package 2 by producing maps on environmental variables that are used for 
predicting the distribution of Baltic Sea habitats.  
 
More information about BALANCE and electronic copies of this report can be found at 
http://www.balance-eu.org. 

 

Alfred Sandström 

Swedish Board of Fisheries, Institute of Coastal Research 

  

 

http://www.balance-eu.org/
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1 INTRODUCTION 

1.1 Background 

The Baltic Sea coastal zone hosts a large variety of environments. In the near-shore 
shallow areas both production and diversity are usually high, which makes these habitats 
both ecologically and economically valuable and important for several organism groups. 
For several fish species these shallow areas function as spawning, feeding and recruit-
ment habitats. The vast majority of both marine and freshwater fish species in the Baltic 
Sea utilise shallow coastal areas (depth 0-10 m) as nursery habitats. The threats to these 
environments are, however, many and there is a need to identify habitats with particu-
larly high potential for fish recruitment in order to enable an efficient physical planning 
and thus a sustainable coastal zone management. Knowledge on the distribution of ma-
rine habitats is very fragmented today, mainly because of the high costs associated with 
conducting field surveys in marine areas. Remote sensing has the potential advantage of 
covering large areas and enabling a fast and resource-efficient method to map the char-
acteristics of shallow habitats.  

Mapping of fish nursery areas as well as the majority of other key biological habitats in 
BALANCE will mainly be conducted by combining statistical models describing the 
habitat requirements of the target organisms and using GIS to produce geographical 
predictions by combining several layers of habitat information. Since the access to high 
resolution maps that cover larger coastal areas currently is a significant bottleneck in all 
such efforts to model distribution of coastal habitats, the benefits from developing re-
mote sensing techniques may be of fundamental importance for the long-term success of 
the project. 

In this evaluation of the potential of remote sensing we mainly concentrated on three 
environmental variables: (i) coverage and composition of submerged and emergent 
vegetation, (ii) water depth and to a smaller extent (iii) light attenuation. These parame-
ters were chosen since they are important for characterising coastal habitats in general 
and fish nursery areas in particular. 

i. Vegetation is the main provider of structural complexity in marine and freshwater 
ecosystems and its importance in facilitating predator-prey interactions and sustain-
ing species diversity in aquatic ecosystems has been demonstrated in numerous eco-
logical studies (e.g. Orth et al., 1984; Pihl, 1986; Christensen & Persson, 1993; 
Mattila, 1995; Eklöv, 1997; Grenouillet & Pont, 2001). Vegetated areas may offer 
spawning substrate, refuge for larvae and juveniles during predation-sensitive 
stages and foraging possibilities for many coastal fishes. Current studies conducted 
by SBF in Pilot Area 3 indicate that fish species with littoral larvae may be particu-
larly dependent on vegetation (fig. 1). Studies within associated projects also show 
that loss of vegetated habitats and/or shifts in vegetation communities caused by 
physical disturbances and boating activities may affect the recruitment of near-
shore fish species (Sandström et al., 2005). 
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Fig. 1. Relationship between the catch per unit effort (CPUE) of juvenile fish and habitat complexity 
measured as the product of mean vegetation coverage (%) and height (cm). Data from the INTERREG 
IIIA financed project “Fish production in shallow bays”. 

 
 

ii. Water depth is one of the key parameters in modelling marine habitat distribution, 
both as a direct and as an indirect predictor variable. It is often highly correlated 
with other environmental variables such as vegetation, temperature, light climate 
and exposure to waves and ice-erosion. In order to use depth as a predictor variable 
for both fish recruitment potential and vegetation community composition there is a 
need for relatively detailed bathymetry maps, particularly for areas shallower than 
5 m in depth (fig. 2). Such maps are not available at the moment and thus a success-
ful attempt to use remote sensing techniques will be necessary to use depth as a pa-
rameter in the modelling of these as well as other organism groups. 
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Fig. 2. Species model response curves in relation to a depth (m) gradient. Data from Sundblad, G., 
Sandström, A., Mattila, J., Snickars, M., unpublished data. Ο = pike, Δ = roach, + = rudd, x = tench, ◊ 
= goby.

 

iii. Light attenuation or water turbidity may vary considerably within the archipelago 
areas in pilot area 3 partly due to natural causes but to a large extent also due to 
anthropogenic disturbances, e.g. eutrophication (Breukers et al., 1997), dredging 
(Gregory, 1990) and deforestation (Berube & Levesque, 1997). As a consequence 
water turbidity in many marine BS areas has been substantially elevated and the 
composition of suspended and particulate materials altered. Different substances 
absorb different parts of the light spectra, thus the intensity of remaining wave-
lengths will vary with both depth and the composition and abundance of absorbing 
agents. Visual conditions also affect the depth distribution of submerged vegetation 
as well as the interactions between all organisms relying on visual cues for perceiv-
ing their ambient environment. In addition, water turbidity is a strong indicator for 
system productivity. Turbidity is particularly well correlated to the distribution of 
fish juveniles of species equipped with sensory physiological adaptations that en-
hance foraging and anti-predator behaviour in dim and turbid conditions and/or 
species that are favoured by increased productivity (Sandström, 2004). 

1.2 Project goals 

The objectives of the project are to: 

i. evaluate remote sensing using satellite imagery from SPOT 5 as a method for map-
ping shallow coastal habitat characteristics, such as submerged and emergent vegeta-
tion, Secchi depth and water depth, in the Baltic Sea. 

ii. evaluate if satellite based information can complement existing information and 
hence be incorporated in the strategies developed to protect the marine environment 
and to achieve a sustainable management of fish resources.  
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2 STUDY AREA AND DATA 

2.1 Study area 

The study area covers three coastal types with 
different water characteristics. The northern-
most scene covers the area around Holmöarna 
in the southern Bothnian Bay, the scene in the 
middle covers large parts of the coast and ar-
chipelagos in Uppsala County in the southern 
Bothnian Sea and the southernmost scene cov-
ers the northern part of Stockholm archipelago 
in the northern Baltic proper.  

2.2 Data 

2.2.1 Satellite data 

 

 

 

The satellite SPOT 5 was launched in 2002 and 
circles the earth in 26 days. Four sensor chan-
nels have been used for the analyses, where 
channel XS1 is green (0.50-0.59 μm), channel 
XS2 is red (0.61-0.68 μm), channel XS3 is near 
infra-red (0.78-0.89 μm) and channel XS4 is 
shortwave infrared (1.58 to 1.75 µm). The 
scenes have a spatial resolution of 10 metres, 
except for channel XS4 (SWIR) with 20 m 
resolution. The images are shown in fig. 3. 

One SPOT-5 scene was chosen for each of the 
three areas (table 1). The images were chosen 
among available summer images with no or lit-
tle clouds. Only summer images were of inter-
est since that was the time of year when the reference data was sampled and when the 
aquatic vegetation is most developed.   

Fig. 3 Study area. 

Table 1. Three scenes from SPOT-5 were used in the analyses.

 

Satellite, Scene id Area Date of registration 

SPOT-5, 058/226 Uppland 2003-09-05 

SPOT-5, 058/219 Holmöarna 2005-06-19 

SPOT-5, 061/228 Stockholm  2004-08-08 
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2.2.2 Reference data 
Point data on cover of submerged and emergent vegetation, water depth and Secchi 
depth was collated from field surveys conducted in 2005-2006. The data was used for 
calibration in the satellite image analyses as well as for validation of the results. 

Table 2. Reference data for classification 
Producer: Area Date Type of data 

SBF and The 
Foundation for 
Uppland 

Uppland 20050816 – 
20050916 

Field survey 

SBF Holmöarna 20050803 – 
20050814 

Field survey 

SBF Stockholm  20050808-
20050902 

Field survey 

 

T able 3. Other data for validation. 

Producer: Area Type of data 

The municipality of Värmdö Stockholm Classification from aerial photo 
interpretation 

Lantmäteriet All Aerial photos  
 

2.2.3 Cartographic data 
Nautical charts (scale 1. 25 000) and national maps (scale 1: 50 000) were used to out-
line the classification area.  
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3 METHODOLOGY 

3.1 Overview 

The methods used for classification of the satellite scenes are described below and in a 
conceptual model in figure 4. 

1. Two masks are produced (1) cloud/cloud shadow mask and (2) open land and water 
areas within 0 – 6 meters depth. 
1.1. A study area is produced by applying the masks above. Clouds, cloud shadows 

and areas that are not open land or water within 0 – 6 meters depth is masked 
out of the satellite scene. 

1.2. A spectral separation is made in the SWIR channel (XS4) of SPOT 5 in order to 
separate land/emergent vegetation from open water. 

1.3. High and medium intensity pixels are separated into land/emergent vegetation. 
1.3.1. A segmentation operation is applied to the land/emergent vegetation area. 
1.3.2. A maximum likelihood classification is applied to distinguish common 

reed and other vegetation into spectrally homogeneous areas. 
1.3.3. An emergent vegetation classification is produced. 
1.3.4. The result is edited by deleting small and heterogeneous areas. 
1.3.5. The result is a map of emergent vegetation. 

1.4. Low intensity pixels are separated into open water. 
1.4.1. The open water area pixels are used as input to the production stage in 

the Artificial Neural Network (ANN) described in section 3. 
 
2. The reference data and the satellite data is joined in a table for each point of refer-

ence data. The result is a table with spectral information as well as reference data of 
depth and vegetation cover/class. 
2.1. Data points within clouds or cloud shadows are deleted from the table as are 

points with incomplete data. 
2.2. A training data file is created with information about id, coordinates, XS1, XS2, 

XS3, depth, vegetation cover/class and Secchi depth if available. 
2.3. The training data is applied in the Artificial Neural Network (ANN) 
2.4. The Artificial Neural Network (ANN) is trained using 10 000 iterations. 

2.4.1. In the first run XS1, XS2 and XS3 are used as input and depth is used as 
output. In the Uppland scene, where Secchi depth data was available, Sec-
chi depth is run first, with XS1, XS2 and XS3 as input. Thereafter the three 
spectral bands and Secchi depth is used as input when analysing depth.  

2.4.2. In the second run XS1, XS2, XS3, depth and/or Secchi depth is used as 
input and vegetation cover class is used as output. 

2.5. The result from the training stage in the ANN is tested on the training dataset. If 
the test has acceptable results (see e.g. Table 8 and 9) the network setting is 
saved while the connection to the training dataset is removed. 

 
3. The network is connected to the open water area pixels (the production data set) and 

the resultant grids are produced. 
3.1. The estimation grids produced are depth, Secchi depth (only for Uppland) and 

vegetation cover classification. 



 

 

BALANCE Interim Report No. 12 10  
 

 

Reference data

User OrganisationService Provider

The reference data is
adapted for specifik

purpose. Data
consists of id, date,
coordinates, depth,

secchi depth,
vegetation cover/

class

Geocorrected
Satellite data

(SPOT5)

2
JOIN

2.1
Incomplete data and
data within clouds or
cloud shadows are

removed

2.2
Training data

(Id, coordinates, XS1,
XS2, XS3, Depth,

Secchi depth,
Vegetation cover/class)

2.3
Artifical Neural
Network (ANN)

2.4
Training

2.5
Testing

3
Producing

2.4.1
Input: XS1, XS2, XS3

Output: Depth and secchi depth

2.4.2
Input: XS1, XS2, XS3, Depth and secchi depth

Output: Vegetation cover

3.1
Result

(Depth, Secchi depth and
vegetation cover/class map)

1.4.1
Input: Open Water

1.1
Classification area

(Area with no clouds or cloud
shadows, within open land

and water 0 - 6 meters depth)

1
Mask: Clouds

Mask: Open Water
Mask: 0-6 meters depth

Mask: Open Land

1.3.1
Segmentation

1.3.2
Maximum likelihood

classification

1.3.3
Emerged
vegetation

classification

1.3.4
Editing

1.3.5
Result

(Emerged
vegetation map)

1.2
Separation in XS4

1.4
Open Water

1.3
Land/

Emerged
vegetation

Fig. 4. Flow scheme over the analyses performed in the classification of emergent vegetation, depth, 
Secchi depth, and submerged vegetation in the SPOT 5 scenes.  
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3.2 Data pre-processing 

3.2.1 Masks and classification area 
A mask was created in order to only include areas of interest and to exclude areas cov-
ered by clouds or cloud shadows. The mask includes: 

1. Water between 0-6 m depth (from nautical charts) 

2. Open land lower than 5 meter (from map in scale 1: 50 000) 

The mask excluded clouds and cloud-shadows that were visually identified.  

Within the classification area, the SWIR (short-wave infrared) channel was used to 
separate emergent vegetation/land from open water based on a threshold. The two sepa-
rate areas are classified by different methods.   

3.2.2 Reference data from field surveys 
Reference data (table 4) was prepared and provided by the Swedish Board of Fisheries 
(SBF). Field surveys were conducted by SBF and The Foundation for Uppland. The 
data include information about: 

• position (Swedish national coordinate system RT90), 

• depth 

• Secchi depth (when available) 

• vegetation cover  

• vegetation type 

The field data on vegetation and depth was collected by a free diver at sites with a depth 
ranging from 0 to 6 m. Two types of field surveys were conducted:  

 
1. A free diver investigated vegetation and water depth of a 10 × 10 m area. The 

sites were randomly distributed and stratified along a wave-exposure continuum 
in each survey area. For each 10 × 10 m area the coverage of all species of un-
derwater vegetation was estimated using five classes (0-4). Depth was measured 
at three locations at each site with a precision of 5 cm. Mean depth was used in 
all analyses. Positioning of the sample sites were conducted with a GPS (±10 m 
precision) at the center of each square.  

2. A free diver investigated vegetation coverage and depth of 10× 1 m areas in 
shallow lagoons. Vegetation coverage of all species along with depth were sur-
veyed at each site by diving along parallel transect lines (4-20 lines per site, 
length 20-340 m) drawn perpendicular to the length axis of the lagoons from one 
shore to the opposite, thus covering the entire site. The first line was placed 5 m 
from the innermost shore, the second line was placed at a distance of 50 m from 
the first one, and the rest of the lines 50 m from the previous one until the entire 



 

 

BALANCE Interim Report No. 12 12  
 

area was surveyed. Depth and cover percentage of vegetation (cover classes, 0-4) 
was estimated at every ten metres, thus covering a 10 × 1 m sized rectangle (a 
total of 24-230 rectangles per site). Positioning of the sample sites were con-
ducted with a GPS (±10 m precision) at the end-points of the transect lines. 

The final ANN analyses were performed to distinguish between areas with high and low 
vegetation cover (all species together) and each sample point was classified into one of 
three vegetation cover categories: 0-20, 20-80 and >80% vegetation cover. Total per 
cent vegetation cover for each sample point was obtained by converting each species es-
timated cover class (0-4) into per cent cover (cover class 1 = 2.5%, cover class 2 = 15%, 
cover class 3, 40%, cover class 4 = 75%), and summarising the cover of all species.  

Depth and secchi depth/turbidity data was also collected in separate surveys in two of 
the study areas. Secchi depth is the maximum depth at which a white disc (Secchi-disc) 
is visible from the surface. For shallow sites, where Secchi depth could not be properly 
measured, water turbidity was registered instead. Turbidity was measured in 
nephelometric turbidity units (NTU) with a turbidimeter (HACH 2100P) calibrated with 
formacin. NTU was later recalculated to Secchi depth using the following relationship 
obtained from parallell measurements of both variables: Secchi depth = 13,316  turbid-
ity -1,4402 (R2 = 0.86). 

Table 4. Number of reference points used in ANN for each area.

Area Depth Secchi depth Vegetation 

Uppland 36 36 729 

Stockholm 81 81 750 

Holmöarna 780 N/A 299 
 

 
The field survey data was combined with the satellite data from the green (XS1), red 
(XS2) and infrared (XS3) channels to create training data for the artificial neural net-
work (ANN). Table 4 presents the number of datapoints from the reference dataset that 
was used for training of the neural network.  

3.3 Segmentation and classification of emergent vegetation  

3.3.1 Background 
In the study areas of Stockholm and Uppland emergent vegetation mainly consists of 
common reed belts (Phragmites australis), whereas in the study area around Holmöarna 
other species e.g. spikerushes (Eleocharis sp.), bulrushes (Typha sp.) and clubrushes 
(Schoenoplectus sp.) constitute a major part of the emergent vegetation (fig. 5). The de-
lineation of emergent vegetation focused on common reed. Common reed is the largest 
grass in the region and normally forms large stands, making them relatively easy to 
separate from water using remote sensing. Reed belts are an important habitat providing 
food and shelter for many fishes, particularly for the early life-stages (Urho, 2002). 

Segmentation of satellite data is a method that makes it possible to use other information 
of the objects than the pixels spectral value, e.g. shape, placement and texture. The 
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method was chosen to solve the problem of separating common reed from grasslands as 
the reed-belts continue from the water on land and to be able to distinguish reed belts 
from pixels with a mixture of land and water.  

Fig. 5. The two dominating types of emergent vegetation in the study areas. Left: a dense patch of bul-
rush (Schoenoplectus sp.) at Holmöarna. Right: common reed (Phragmites australis) growing in a shal-
low bay in the Uppland area. 

3.3.2 Methodology 
Emergent vegetation and land was classified using segmentation (see 3.2.1) and is based 
on all spectral sensor channels. Segments have no class but are polygons including pix-
els that are more alike inside the segment than towards its neighbouring segments. Seg-
ments were used as samples, i.e. given one of six classes: reed (i.e. all emergent vegeta-
tion), mixture of reed and water, mixture of land and water, forest, bare rock and other 
land. The samples for each class were selected using aerial photos as reference. Statis-
tics of how well the classes can be separated were analysed in the classification program 
and serves as help for the operator to select additional samples or exclude samples. The 
samples were then used as input to perform a maximum likelihood classification.  

The classification was rule-based where the output inherited one of two main classes; 
land and water, from a thematic layer. Classes without reed were reclassified to either 
land or semi-open water surface based on the main class. Reed classes were reclassified 
to either reed on land or reed in water.  

The reed-classes were related to neighbours which, for example, created the class “reed 
on land intersecting reed in water”. Reed on land that did not intersect water or reed in 
water was reclassified as land. Mixture of reed and water that did not intersect with reed 
in water or reed on land was reclassified as semi-open water surface. The remaining ar-
eas of reed (reed on land intersecting reed in water/water + reed in water) were analysed 
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based on shape that gave additional classes of super objects; narrow reed belts (shape 
asymmetry > 0,85), small reed belts (< 5 pixels) and larger reed belts. This resulted in 
the classes described in table 5. 

Small and narrow reed belts were evaluated. These areas had low classification accuracy 
and were therefore reclassified to either “Land” or “Semi-open water surface” based on 
their position in maps.  

Table 5. Resulting classes and inheritance in the segmentation analysis. 

Resulting class Main class (The-
matic layer) 

Subclass 1 (ML-
class) 

Subclass 2 (shape/relation) 

Semi-open water 
surface 

Water Bare rock / Mixture 
water and land 

 

  Reed /mixture reed 
and water 

Small reed belt or narrow 
reed belt 

Land Land Bare rock 
/Forest/Other land 

 

  Reed  Small reed belts or narrow 
reed belt 

  Reed /mixture reed 
and water 

Not intersecting reed in wa-
ter 

Reed on land Land Reed /mixture reed 
and water 

Larger reed belt intersecting 
reed in water 

Reed in water Water Reed /mixture reed 
and water 

Larger reed belt 

 

3.4 Classification of submerged vegetation, depth and Secchi 
depth using Artificial Neural Networks 

3.4.1 Background 
Artificial Neural networks (ANN) is a tool that can be used for classification or data 
modelling without assuming a certain type of mathematical relationship. The network is 
prepared with data representing input (here satellite data) and desired values (here depth, 
Secchi depth or vegetation cover). The training of the network is an iterative process 
where the network learns about the connection between input and desired signals. After 
training, the network is used to calculate desired data from input values.  

Statistical correlation between two variables can be described with analytical statistical 
methods as regression analysis. More complex relationships between multiple input and 
outputs may be analysed with multivariate statistics. If non-linear relationship is as-
sumed it requires that you decide the mathematical function for the non-linear regres-
sion. With an artificial neural network non-linear multivariate analysis can be performed 
directly from the input data without an a priori decision of the relationship between vari-
ables. In that case ANN can be described as a method to perform “non-linear multivari-
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ate regression”. The advantage of ANN is that it is flexible and can identify complex 
patterns, including interactions between variables. An inherent problem, on the other 
hand, is that it is difficult to describe the causal connection between input and desired 
data.  

The training of ANN is an iterative process based on a selection of input values and de-
sired values from the same location. The difference between output from the network 
and desired value is calculated and weights in the network are adjusted to minimise the 
error. The table is run through the network again, the differences are calculated and 
weights adjusted. The iteration is normally done thousands of times and the best weights 
are saved in the final network. This network can then be used to classify other input 
data, which in this case is the rest of the satellite scene. 

An ANN is best described in a graphical model. The network is built on several nodes in 
multiple layers with nodes in one layer connected to all nodes in another layer. The 
number of nodes can vary; we have used one input layer, one hidden layer and one out-
put layer. A larger number of hidden layers may increase the ANN:s capacity to fit input 
to desired values, but using many hidden layers may increase the risk of overfitting the 
model. In this study one hidden layer was used, to compromise between model flexibil-
ity and generality.  

   

Outputs

Fig. 6. Schematic drawing of an Artificial Neural Network. 

3.4.2 Methodology 
A back-propagation artificial neural network (ANN) was applied to classify multispec-
tral remote sensing imagery data (SPOT5). The classification includes three steps: (1) 
training, (2) testing and (3) production. SPOT5 imagery data was used as input training 
data and field data was used as output desired data and for the accuracy assessment.  

Selecting an efficient combination of satellite sensor channels for submerged vegetation 
classification, depth and Secchi depth is important for an effective refinement of an 
ANN. The contribution of each satellite sensor channel can be calculated from the 
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weights of the neural network. For the neural network analysis the spectral sensor chan-
nels for green (XS1), red (XS2) and near infrared (XS3) light were selected.  

Several attempts to use one or all sensor channels as well as an index between channel 1 
and 2 were made. The project also tested several different steps of vegetation classifica-
tion to optimise the results. The final method classified depth and Secchi depth if avail-
able in a first step; the values from the depth and Secchi depth classification were then 
used together with sensor data to classify vegetation.  
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4 RESULTS AND DISCUSSION 

4.1 Emergent vegetation 
The results for the three different study areas are raster layers with four classes (fig. 6). 
The class “Water, semi-open surface” includes pixels with a mixture of land and water, 
bare rock or sand just beneath the water surface and bridges, jetties and boats situated 
within the water area in maps. It may also include some emergent vegetation with a low 
coverage (< 20 %). Reed was separated into two classes, as the class “reed in water” has 
a higher accuracy than “reed on land”. Reed on land is partly mixed up with other grass-
lands (mainly high grass in moist areas).  

semi-open surfacesemi-open surface

Fig. 7. Example of the classification results of emergent vegetation around the island of Svartnö, Stock-
holm.  

 
The accuracy assessment was made on a random sample of points stratified by class in 
Uppland and Stockholm. The points were then evaluated against interpretations of or-
thophotos (Table 6 & 7). In Stockholm, reed on land was not separated from reed in wa-
ter in the orthophoto interpretations. The satellite scene interpretation for Holmöarna 
was not evaluated since the orthophotos available were taken before the vegetation pe-
riod.  

Evaluation results for Uppland and Stockholm are given as i) overall accuracy (total 
number of correctly classified / total number of reference pixels), ii) user accuracy (cor-
rectly classified per class / total number of reference pixels classified as that class) and 
iii) producer accuracy (correctly classified per class / number of reference pixels of that 
class). 

The classification of emergent vegetation, that is, “reed in water”, was successful for 
both scenes (Table 6-7). The user accuracy of that class was lower for Uppland than for 
Stockholm mainly due to that areas classified as reed was found to be semi-open water 
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surfaces in the interpretation of ortophotos. The difference may be explained by that the 
Uppland scene is from September when the vegetation may be more developed than in 
the photos or that floating vegetation covers shallow areas in the satellite scene. In the 
analyses, reed was not separated from other emergent vegetation, such as bulrushes and 
clubrushes, as there was no reference data available on these species.  

Table 6. Accuracy assessment of the segmentation classification of the Stockholm scene.   
 Classified 

Reference data Open wa-
ter 

Water, 
non 
open 
surface 

Reed  Land Total 

U
se

r a
cc

. 
(%

) 

Pr
od

uc
er

 
ac

c.
(%

) 

Open water 33 3     36 91,7 89,2 
Water, semi-open 
surface 

4 11 4 2 21 52,4 73,3 

Reed on land     5 8 13 38,5 
Reed in water   1 14 1 16 87,5 

 
79,2  

Land     1 9 10 90,0 45,0 
Total 37 15 24 20 96     

 

Table 7. Accuracy assessment of the segmentation classification of the Uppland scene. Overall accuracy 
71 %. 

 Classified 

Reference 
data 

Open 
water 

Water, 
semi-
open 
surface 

Reed 
on 
land 

Reed in 
water 

Land Total 
U

se
r a

cc
. 

(%
) 

P
ro

du
ce

r 
ac

c.
(%

) 
Open water 16 1       17 94,1% 84,2% 
Water, semi-
open surface 

2 12   1 7 22 54,5% 48,0% 

Reed on land     7 1 12 20 35,0% 87,5% 
Reed in water 1 10   14 2 27 51,9% 87,5% 
Land   2 1   47 50 94,0% 69,1% 
Total 19 25 8 16 68 136     
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4.2 Secchi depth 
The classification of Secchi depth covers shallow open water between 0-6 meters depth 
and is based on sensor channel XS1, Xs2 and XS3 as input. Based on the ANN analysis, 
a grid of continuous Secchi depth values was produced for the Uppland scene (fig. 8). 
The analysis of predicted versus observed values of Secchi depth showed that the major 
patterns of Secchi depth variations were captured in the analysis (fig. 9). 

 
Fig. 8. Sec-
chi depth 
classifica-
tion for the 
Uppland 
scene (light 
to dark blue 
corresponds 
to 1-6 m 
Secchi 
depth) and 
the position 
of the refer-
ence points 
(red dots). 
Only areas 
shallower 
than 6 me-
ters were 
classified.  

Uppland secchi depth

y = 0.9256x
R2 = 0.4434
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Fig. 9. Pre-
dicted ver-
sus ob-
served 
Secchi 
depth for 
the Uppland 
scene.  
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For the Stockholm scene the Secchi depth prediction was not good (fig. 10-11). This 
might be due to a limited number of sites with low Secchi depth, a mismatch in time of 
sampling of reference data and the satellite scene and/or no reference data in the inner-
most and outer archipelago to obtain an efficient ANN analysis.   

For Holmöarna no reference data for the variable Secchi depth was available, hence no 
Secchi depth 
classification 
was made for 
this area. 

Secchi depth Stockholm

0
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d 
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Fig. 10. Secchi 
depth 
classification 
for the 
Stockholm 
scene (light to 
dark blue 
corresponds to 
1-6 m Secchi 
depth). The 
reference sites 
(red dots) are 
mainly 
concentrated to 
the southern 
part of the 
scene.  

 

 

 

Fig. 11. 
Predicted 
versus observed 
Secchi depth for 
the Stockholm 
scene. 
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4.3 Depth 

Water depth was analysed using ANN for all three areas. The analyses are based on 
spectral sensor channel XS1, XS2, XS3 as input variables. For the Uppland scene, a 
separate ANN that included predicted Secchi depth was also ran. The final predictions 
were evaluated against the observed data in all areas. The prediction of depth in Stock-
holm and Holmöarna worked well in areas down to 3m (Fig. 12-13 and table 8-9).  

Depth Stockholm

y = 0,9193x
R2 = 0,5259

0,0
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1,0
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0,0 0,5 1,0 1,5 2,0 2,5 3,0 3
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te

d 
(m

)

,5

Fig. 12. Predicted versus observed depth for the Stockholm scene.
 

Table 8. Evaluation of the depth classification in Stockholm. Mean squared error (MSE) per depth 
interval (reference points used in the classification and additional reference points from SBF), maximum 
overestimate (classified depth deeper than observed), maximum underestimate (predicted depth is more 
shallow than observed) and minimum squared error in the interval. 
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Depth inter-
val (ob-
served) 

Number of 
reference 

points MSE 
Max overes-

timate 
Max underes-

timate Min error 
0 - 0,5 m 14 0,5 1,6 -0,2 0,0
0,5 - 1 m 52 0,3 1,2 -0,7 0,0
1 - 1,5 m 79 0,3 1,0 -0,5 0,0
1,5 - 2 m 80 0,3 0,7 -1,8 0,0
2 - 2,5 m 107 0,3 0,7 -0,9 0,0
2,5 - 3 m 36 0,4 0,0 -1,1 0,0
3 - 3,5 m 9 0,8 -1,0 0,6

All 377 0,3 1,6 -1,8 0,0 
 

 
 

Depth Holmöarna

y = 0,8217x
R2 = 0,2461
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Fig. 13. Predicted versus observed depth for the Holmöarna  scene.
 

Table 9. Evaluation of the depth classification in Holmöarna. Mean squared error (MSE) per depth 
interval (reference points used in the classification and additional reference points from SBF), maximum 
overestimate (classified depth deeper than observed), maximum underestimate (predicted depth is more 
shallow than observed) and minimum squared error in the interval. 
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Depth inter-
val (ob-
served) 

Number of 
reference 

points MSE 
Max overes-

timate 
Max underes-

timate Min error 
0 - 0,5 m 25 0,7 2,6 0,0 0,0
0,5 - 1 m 71 0,3 2,3 -0,5 0,0
1 - 1,5 m 54 0,3 1,5 -0,7 0,0
1,5 - 2 m 33 0,3 0,4 -0,7 0,0
2 - 2,5 m 9 0,4 0,5 -0,5 0,1
2,5 - 3 m 11 0,5 0,8 -1,0 0,0
3 - 3,5 m 2 1,1 -1,4 0,9
3,5 - 4 m 2 1,6 -2,3 1,0
4 - 5 m 2 1,5 -1,7 1,3
5 - 6 m 5 2,2 -2,6 1,1

All 214 0,4 2,6 -2,6 0,0 
 
 
 
 
 

Prediction results for the Uppland scene using only spectral data in the ANN was poor. 
Including Secchi depth in the training dataset for Uppland slightly improved the correla-
tion between predicted and observed data (compare table 10 and 11), however not 
enough for the results to be useful (fig. 14).  

Depth Uppland
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Fig. 14. Predicted versus observed depth for the Uppland scene. The classification is based on XS1, 
XS2, XS3 and Secchi depth. 
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Table 10. Evaluation of the depth classification in Uppland based on XS1, XS2, XS3 and Secchi depth. 
Mean squared error (MSE) per depth interval (reference points used in the classification and addi-
tional reference points from SBF), maximum overestimate (classified depth deeper than observed), 
maximum underestimate (predicted depth is more shallow than observed) and minimum squared error 
in the interval.

Depth inter-
val (ob-
served) 

Number of 
reference 

points MSE 
Max overes-

timate 
Max underes-

timate Min error 
0 - 0,5 m 74 0,4 1,5 -0,3 0,0
0,5 - 1 m 175 0,3 1,2 -0,8 0,0
1 - 1,5 m 157 0,7 0,3 -1,4 0,0
1,5 - 2 m 131 1,2 -1,8 0,2
2 - 2,5 m 94 1,7 -2,2 0,9
2,5 - 3 m 57 2,0 -2,5 1,3
3 - 3,5 m 15 2,6 -3,0 2,1
3,5 - 4 m 6 3,1 -3,5 2,7
4 - 5 m 5 3,7 -4,1 3,6

All 714 1,0 1,5 -4,1 0,0 
 

Table 11. Evaluation of the depth classification in Uppland based on satellite data only. Mean 
squared error (MSE) per depth interval (reference points used in the classification and addi-
tional reference points from SBF), maximum overestimate (classified depth deeper than ob-
served), maximum underestimate (predicted depth is more shallow than observed) and mini-
mum squared error in the interval. 

Depth inter-
val (ob-
served) 

Number of 
reference 

points MSE 
Max overes-

timate 
Max underes-

timate Min error 
0 - 0,5 m 75 0,5 3,3 -0,3 0,0
0,5 - 1 m 181 0,5 2,9 -0,8 0,0
1 - 1,5 m 174 0,8 2,4 -1,3 0,0
1,5 - 2 m 143 1,0 1,9 -1,8 0,1
2 - 2,5 m 106 1,6 1,1 -2,3 0,0
2,5 - 3 m 61 2,0 0,8 -2,8 0,1
3 - 3,5 m 15 2,9 -3,3 2,1
3,5 - 4 m 6 3,1 -3,8 2,2
4 - 5 m 5 4,0 -4,4 3,5

All 766 1,0 3,3 -4,4 0,0 
The higher accuracy of the analyses in the Stockholm and Holmöarna scenes can proba-
bly be explained by the lower turbidity in these areas. In order to predict depth accu-
rately it seems necessary that sufficient light penetrate to the bottom. In the Uppland 
scene, light penetration may have been further restricted by the lower solar elevation 
angle and poorer illumination conditions prevailing in September.  



 

 

BALANCE Interim Report No. 12 25  
 

Fig. 15. Sub-samples of the predictions of depth. In Uppland (left, showing the inlet of Kallri-
gafjärden) the predicted depth in general is too shallow and only depths shallower than 1 meter has a 
MSE < 0,5. In Holmöarna (right, showing the island of Grossgrundet to the left) and Stockholm the 
prediction was more accurate and depth down to 3 meters could be predicted with MSE < 0,5.  

4.4 Submerged vegetation 
A number of different classifications of submerged vegetation were tested, including 
different classes of cover and colour of the vegetation. The species were classified into 
red, green and brown species (in analogy with Vahtmäe et al. (2006)), but analyses of 
the spectral information (fig. 16) as well as ANN analyses showed that it was not possi-
ble to separate between vegetation of different colour with satisfying result.  

Including depth, as a predictor did not increase the accuracy of the interpretations, while 
including Secchi depth, which could only be done for the Uppland scene since no Secchi 
depth predictions were available for the other areas, seemed to be central for achieving 
adequate classification. Thus, the Uppland scene was the only one where the classifica-
tion met the required accuracy level (Table 12-14). Although the overall accuracy was 
relatively low also for this scene , the predictions are probably useful as incorrectly clas-
sified pixels were as a rule classified to the adjacent class. Thus, the relative differences 
in vegetation coverage should be fairly well captured in the analysis. In interpreting 
these results it should be noted that the satellite scene and the field data are from differ-
ent years, why small-scale changes in the distribution of the vegetation between years 
may have affected the accuracy of the predictions. A visual inspection of the classifica-
tion showed that it was poor in the innermost bays (e.g. the inlet of Granfjärden in the 
image), most likely due to the very high turbidity of these areas. In the other areas the 
classification seems to be accurate.  
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The vegetation classification for Stockholm was not useful, as almost no vegetation was 
identified. For Holmöarna the High coverage class was captured to some extent, but not 
the other classes. However, a visual inspection indicates that the main patterns in the 
vegetation distribution were captured. The analysis of the Holmöarna scene was proba-
bly negatively affected by the large difference in data capturing date, as the satellite 
scene was from mid June while the reference data was from August, which means that 
different seasonal succession stages were compared in the analyses. 

 

Red Vegetation

Red and Green Vegetation

Green Vegetation

Fig. 16. Correlation between spectral information (bands XS1-3) to reference points with red, green 
or red and green vegetation.  
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Fig. 17. Vegetation cover image for Uppland. The classification is based on an analysis where satel-
lite data and Secchi depth has been used as input. 

Cover of submerged vegetation
0 - 20 % Veg

20 - 80 % Veg

80 - 100 % Veg

 

 

Table 12. Accuracy assessment for the classification of submerged vegetation in Uppland. Spectral 
ands XS1, XS2, XS3 and Secchi depth have been used as input data. Overall accuracy 51.9 %. b 

Uppland Classified 

Reference data Low cov-
erage 

Medium 
coverage 

High cov-
erage 

Total 

U
se

r a
cc

. 
(%

) 

P
ro

du
ce

r 
ac

c.
(%

) 

Low coverage 16 77 36 129 12.4% 57.1% 
Medium coverage 10 135 157 302 44.7% 48.9% 
High coverage 2 64 222 288 77.1% 53.4% 
Total 28 276 415 719   
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Table 13. Accuracy assessment for the classification of submerged vegetation in Stockholm, where 
spectral bands XS1, XS2, XS3 have been used as input data. Overall accuracy 39.5%. 

Stockholm Classified 

Reference data Low cover-
age 

Medium 
coverage 

High cov-
erage 

Total 

U
se

r a
cc

. 
(%

) 

P
ro

du
ce

r 
ac

c.
(%

) 

Low coverage 284 19 9 312 91.0% 41.0% 
Medium coverage 197 5 5 207 2.4% 15.6% 
High coverage 211 8 4 223 1.8% 22.2% 
Total 692 32 18 742   

 
 

Table 14. Accuracy assessment for the classification of submerged vegetation in Holmöarna, where 
pectral bands XS1, XS2, XS3 have been used as input data. Overall accuracy 36.4%. s 

Holmöarna1 Classified 

Reference data Low cover-
age 

Medium 
coverage 

High cov-
erage 

Total 

U
se

r a
cc

. 
(%

) 

P
ro

du
ce

r 
ac

c.
(%

) 

Low coverage 55 89 9 153 35.9% 40.1% 
Medium coverage 67 30 6 103 29.1% 24.6% 
High coverage 15 3 23 41 56.1% 60.5% 
Total 137 122 38 297   

 
 

4.5 Alternative methods (cost-benefit) 
It may be beneficial to use other satellite or image data for mapping coastal features, 
such as depth, Secchi depth, and vegetation, as a higher geographic resolution or spec-
tral resolution (including blue light) may be needed for more reliable classifications. Ae-
rial photos have the additional benefit that atmospheric influence is less than in satellite 
images. The disadvantage of images with a higher resolution is that costs will increase 
as the number of images needed to classify the coastal area increases (table 15). Fur-
thermore, the amount of reference data needed increases, as such data is needed for each 
image (Fig. 17). The increased costs of using higher resolution images has to be 
weighed against the potential benefits on a case by case basis. 
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Fig. 18. Relative size of alternative images.
 
 

Table 15. Image costs and estimations of time for analysis using alternative data sources. It is assumed 
that the time spent classifying one image whether it is SPOT or a digital photo is approximately the 
ame.   s 

 Approximate 
number of images 
to cover Swedish 
coast 

Image cost 
(SEK/km2) 

Work time com-
pared to SPOT  

Costs compared 
to SPOT 

SPOT 5 60 6 1 1 

VHR 360 60-100 6 10-16 

Digital aerial pho-
tos 

3600 60 60 10 
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5 CONCLUSIONS 

5.1 SPOT 5 satellite data 

The results of this pilot project indicate that SPOT 5 satellite images has the potential to 
identify depth and Secchi depth, as well as emergent and submerged vegetation in 
coastal areas of the Baltic Sea. The current lack of detailed, continuous maps of envi-
ronmental parameters in shallow areas of the Baltic Sea is probably the main bottleneck 
for habitat modelling within the region. Therefore, additional efforts to enhance the in-
terpretation of satellite images are highly demanded. The accuracy of the analyses in 
this study were quite variable, but still show that with further methodological develop-
ment SPOT 5 images may be used for cost-efficient large-scale mapping of habitat char-
acteristics of shallow coastal areas.  

The spatial resolution of 10x10 meters in the SPOT 5 data may sometimes be to coarse 
for accurate analyses. For example, in this study many of the sample points in the refer-
ence dataset had to be omitted as they were situated close to land, and thus had spectral 
signatures that were influenced by land. Also, spatial variability of vegetation can be 
considerable, even at scales smaller than 10x10  m, why only large, relatively homoge-
neous vegetation patches can be identified using SPOT 5 scenes. The problems associ-
ated with the high level of small-scale heterogeneity in vegetation coverage may also be 
further accentuated due to inexact positioning of the reference data.  

Using SPOT5 for analyses of underwater features is also limited by the lack of spectral 
information in the blue band. Blue light has the highest penetration capability in water, 
and information on blue light reflectance would thus probably increase the accuracy of 
the analyses. Alternative satellite data with higher spatial resolution and spectral infor-
mation for the blue band exists on the market. This data is however more expensive and 
covers smaller areas, hence requiring more time to classify the same area as one SPOT 
scene. Using higher-resolution satellite scenes also sets a greater demand on the refer-
ence data when it comes to geographic positioning. 

A temporal match in satellite data and reference data information is important for per-
forming accurate analyses. In this study, reference data from the same time of the year 
but in other years than the satellite scenes were used in the analyses. The quality of the 
analyses is therefore most likely largely influenced by interannual variations in the stud-
ied variables. Still, the seasonal variations in both Secchi depth and vegetation cover is 
generally much larger than the interannual variations (when comparing the same months 
in different years), so using data from the same season should be more important than 
having data from the same year.  

5.2 Reference data 

The quality of the reference data used for training the ANN largely determines how suc-
cessful the classification of the satellite image will be. The reference data used in this 
project was mainly collected for other purposes than interpretation of satellite images. 
Substantial parts of the reference dataset in some areas were mainly collected in one 
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specific habitat type (coastal lagoons). Some habitat types thus were under-represented 
which limited the possibilities of attaining accurate predictions for the entire areas. An 
important aspect, especially for classification of vegetation, is that for every satellite 
scene, specific reference data matching the area and the time of the image is required. 
Consequently, if larger areas should be covered with this method it would require exten-
sive reference datasets. Such data is currently collected within the national surveys con-
ducted in coastal Natura 2000 habitats. It would thus be valuable if these extensive sur-
veys are designed in a way that facilitates the use of field data in remote sensing 
analyses. Our experience is that in order to obtain accurate analyses of satellite images, 
the reference data should: 

• be distributed over the whole image to be classified, and cover major gradients 
in the variables that may affect the analysis 

• preferably be collected as close as possible to the satellite image registration 
date. If this is not possible, it should at least be from the same time of year, 
thereby assuming that the spatial variability of the environmental variable in fo-
cus is comparative to the time of registration of the image 

• sampled in a way that the data corresponds to the pixel which it represents 
 

5.3 Emergent vegetation 

Segmentation was an efficient method for classifying reed belts in water. Small or nar-
row reed belts were not captured in the classification as pixel size in the images was 
large (10x10 m).  Since reed belts are important nursery areas for fish larvae, especially 
pike, burbot and cyprinids (Urho, 2002) the segmentation analyses can be essential in 
identifying recruitment habitats for these species.  

5.4 Secchi depth 

An analysis of Secchi depth using only SPOT 5 spectral bands as input data seems to 
work quite well under some circumstances, as it was successful for one of the scenes, 
but not for the other. Since the turbidity of the water may change substantially between 
seasons due to algal blooms etc, it is essential to have a good temporal match of the 
sampling effort and the satellite scene.  

Presently, mapping of Secchi depth with remote sensing in the Baltic Sea region is 
mainly conducted via the MERIS and Terra/MODIS satellites which has rather coarse 
resolution (250x250m - 1x1 km). Using SPOT 5 thus could be a high-resolution alterna-
tive in near-coastal areas where land interference makes low-resolution alternatives un-
feasible. The scene where the Secchi depth prediction was most successful also had the 
most accentuated gradient in Secchi depth, which probably enhanced the analysis. In the 
Stockholm scene, a large part of the reference data where obtained from shallower areas 
with a turbidimeter instead of a traditional Secchi disc, which due to the interaction be-
tween depth and vegetation composition in such areas, could have made the analysis 
less precise. In the Holmöarna area the spatial variation in Secchi depth is comparatively 
low, thus it is probably hard to conduct predictions of Secchi depth for this area, but it is 
also of less biological relevance.  
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5.5 Depth 

Classification of water depth using only SPOT 5 spectral bands as predictor variables in 
the analysis seems to work well down to depths of around 3 m when water is relatively 
clear. As depth information of nautical charts is often inaccurate for these near-shore ar-
eas, satellite imagery may thus provide a tool for obtaining more accurate depth maps. 
These shallow areas have the highest diversity and coverage of vegetation and are also 
the most important nursery areas for many fish species, and more accurate depth maps 
would thus enable better mapping of these important habitats. Using satellite images 
containing blue light information, which penetrates furthest into the water, the depth 
classification could probably be further improved. 

5.6 Submerged vegetation 

The cover of submerged vegetation could be classified relatively well in one of the sat-
ellite scenes, despite the temporal mismatch between the satellite scene and field data. 
Information on Secchi depth in addition to the spectral information seemed to be needed 
for good performance of the model, as the level of turbidity has a large influence on the 
spectral signature. Inspired by the findings of Vahtmäe et al. (2006) we made an attempt 
to model vegetation types with different colours. The results indicated that it was not 
possible to separate spectral signatures from vegetation of different colour with the 
SPOT 5 satellite. This analysis however, was strongly limited by the lack of reference 
data for some of the colour types (particularly the red type).  

For more powerful analyses of submerged vegetation, higher resolution satellite images 
and blue band information is probably needed. Since the interannual variability in vege-
tation may be high, matching field sampling efforts and satellite image acquirement is 
also needed for reliable analyses. 
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