Annex 1 – Environmental variables

This appendix contains maps showing environmental variables that has been created or compiled within the project, and has been used in modeling and predictions.

Depth and depth derivatives

Maps displaying depth and depth derivatives are shown in this chapter. All depth derivatives have been created from the depth grid.

Fig.	Name	File name
92	Interpolated depth grid	djup
93	Slope	lutning
94	Aspect	lutriktn, sydnord
95	Curvature	kurv
96	Landforms	landformer

Figure 92. Interpolated depth grid created from depth data from the Swedish Shipping Administration database.

Figure 93. Slope based on the interpolated depth grid. Zero degrees denotes a horizontal surface and 90 degrees a vertical surface.

Figure 94. Aspect shown in degrees from the north, based on the interpolated depth grid.

Figure 95. Curvature based on the interpolated depth grid. Negative values illustrate sinks and positive values illustrate hills.

Figure 96. Landforms based on the interpolated depth grid.

Hydrographical environmental variables

Here are maps of hydrographical environmental variables such as temperature and salinity presented. The oceanographic variables are based on models for water flow which is then interpolated to continuous layers using the depth information. The oceanographic model is based on one model node per basin in the archipelago (HOME – covers coastal areas, higher resolution), while the offshore nodes are placed 1 km apart (HIROMB – including offshore areas, lower resolution).

Fig.	Name	File name
97	Mean temperature at the bottom (HIROMB)	hb_tembsmn
98	Mean temperature at the bottom (HOME)	hm_tembmn (mean), hm_tembm10 (min)
99	Mean temperature at the surface (HIROMB)	hb_temsmn (mean)
100	Mean temperature at the surface (HOME)	hm_temsmn (mean), hm_temsm10 (min), hm_temsm90 (max)
101	Minimum salinity (10th perc.) (HIROMB)	At surface: hb_salbsm10 (min), At bottom: hb_salsm10 (min)
102	Minimum salinity (10th perc.) (HOME)	At bottom: hm_salbmn (medel), hm_salbm10 (min), hm_salbm90 (max) At surface: hm_salsmn (medel), hm_salsm10 (min), hm_salsm90 (max)
103	Minimum oxygen levels (10th perc.) at the bottom (HOME)	hm_oxybmn (medel), hm_oxybm10 (min)
104	Mean value for total nitrogen at the bottom (HOME)	hm_tonbmn
105	Mean value for total phosphorus at the bottom (HOME)	hm_topbmn
106	Integrated chlorophyll values over the whole water column	hm_chlimn (medel), hm_chlim10 (min), hm_chlim90 (max)

Figure 97. Mean temperature at the bottom (HIROMB).

Figure 98. Mean temperature at the bottom (HOME).

Figure 99. Mean temperature at the surface (HIROMB).

Figure 100. Mean temperature at the surface (HOME).

Figure 101. Minimum salinity (10th perc.) at the bottom (HIROMB).

Figure 102. Minimum salinity (10th perc.) at the bottom (HOME).

Figure 103. Minimum oxygen levels (10th perc.) at the bottom (HOME).

Figure 104. Mean value for total nitrogen at the bottom (HOME).

Figure 105. Mean value for total phosphorus at the bottom (HOME).

Figure 106. Integrated chlorophyll values over the whole water column.

Bottom substrate, Secchi depth and wave exposure

Maps displaying bottom substrate, secchi depth, wave exposure and coastal watercourses are shown in this chapter.

Fig.	Name	File name
107	Bottom substrate	SGU_substrat_1_100_lanKM.shp, SGU_substrat_1_500_lanKM.shp, SGU_ytsub_detalj.shp
108	Secchi depth	secchi_dpt
109	Wave exposure	swm_wh
110	Coastal watercourses	vattendr_avs

Figure 108. Secchi depth from satellite data after median filtration and interpolation.

Figure 109. Wave exposure (Simplified Wave Model – SWM).

Anthropogenic impact layers

Here are maps of human activities such as closeness to urban communities and potentially polluted areas and marine traffic presented.

Fig.	Name	File name
111	Closeness to urban areas	
112	Distance to potentially polluted areas	
113	Marine commercial traffic.	

Figure 111. Closeness to urban areas.

Annex 2 – Predictions

Annex 2 contains maps created by spatial modeling of benthic plants and animals, fish and fish recruitment areas, plankton and jellyfish.

Benthic plants

Predicted probability of presence of benthic plants is presented within the groups brown algae, red algae, and vascular plants. Maps over probability of presence of blue mussel are also presented.

	Fig.	Name	Cover	File name
	114	Chorda filum	% > 0	AgB MARMONI K Chorda filum PA
	115	Ectocarpus siliculosus/	> 0	AgB_MARMONI_K_Ectocarpus Pylaiella PA
e		Pylaiella littoralis		
lga	116	Fucus serratus	> 0	AqB_MARMONI_K_Fucus_serratus_PA
UN N	117	Fucus vesiculosus	> 0	AqB_MARMONI_K_Fucus_vesiculosus_PA
Brov	118	Fucus vesiculosus	≥ 10	AqB_MARMONI_K_Fucus_vesiculosus_PA10
	119	Fucus vesiculosus	≥ 25	AqB_MARMONI_K_Fucus_vesiculosus_PA25
	120	Fucus vesiculosus	≥ 50	AqB_MARMONI_K_Fucus_vesiculosus_PA50
	121	Coccotylus truncatus/ Phyllophora pseudoceranoides	> 0	AqB_MARMONI_K_Coccotylus_Phyllophora_PA
jae	122	Filamentous red algae	> 0	AqB_MARMONI_K_Filamentous_red_algae_PA
alç	123	Furcellaria lumbricalis	> 0	AqB_MARMONI_K_Furcellaria_lumbricalis_PA
Red	124	Furcellaria lumbricalis	≥ 10	AqB_MARMONI_K_Furcellaria_lumbricalis_PA10
	125	Furcellaria lumbricalis	≥ 25	AqB_MARMONI_K_Furcellaria_lumbricalis_PA25
	126	Perennial red algae	> 0	AqB_MARMONI_K_Perennial_red_algae_PA
	127	Perennial macroalgae	> 0	AqB_MARMONI_K_Perennial_macroalgae_PA
	128	Ceratophyllum demersum	> 0	AqB_MARMONI_K_Ceratophyllum_demersum_PA
	129	High submerged vascular plants	> 0	AqB_MARMONI_K_High_submerged_vascular_plants_PA
	130	High submerged vascular plants	≥ 10	AqB_MARMONI_K_High_submerged_vascular_plants_PA10
	131	High submerged vascular plants	≥ 25	AqB_MARMONI_K_High_submerged_vascular_plants_PA25
S	132	Myriophyllum spicatum	> 0	AqB_MARMONI_K_Myriophyllum_spicatum_PA
ant	133	Myriophyllum spicatum	≥ 10	AqB_MARMONI_K_Myriophyllum_spicatum_PA10
r p	134	Ruppia spp.	> 0	AqB_MARMONI_K_Ruppia_spp_PA
cula	135	Stuckenia pectinata	> 0	AqB_MARMONI_K_Stuckenia_pectinata_PA
Vasi	136	Stuckenia pectinata	≥ 10	AqB_MARMONI_K_Stuckenia_pectinata_PA10
Mol- lusks	137	Stuckenia pectinata	≥ 25	AqB_MARMONI_K_Stuckenia_pectinata_PA25
	138	Zannichellia palustris	> 0	AqB_MARMONI_K_Zannichellia_palustris_PA
	139	Zostera marina	> 0	AqB_MARMONI_K_Zostera_marina_PA
	140	Zostera marina	≥ 10	AqB_MARMONI_K_Zostera_marina_PA10
	141	Zostera marina	≥ 25	AqB_MARMONI_K_Zostera_marina_PA25
	142	Mytilus edulis	> 0	AqB_MARMONI_K_Mytilus_edulis_PA
	143	Mytilus edulis	≥ 10	AqB_MARMONI_K_Mytilus_edulis_PA10
	144	Mytilus edulis	≥ 25	AqB_MARMONI_K_Mytilus_edulis_PA25
*Free	*Free to distribute according to the Swedish Maritime Administration (reference 14-01373)			

Figure 114. Predicted probability of presence of the brown alga Chorda filum. The predicted area is restricted to a maximum depth of 41 m.

Figure 115. Predicted probability of presence of the brown alga species Ectocarpus siliculosus/Pylaiella littoralis. The predicted area is restricted to a maximum depth of 41 m.

Figure 116. Predicted probability of presence of toothed wrack (Fucus serratus). The predicted area is restricted to a maximum depth of 41 m.

Figure 117. Predicted probability of presence of bladder wrack (Fucus vesiculosus). The predicted area is restricted to a maximum depth of 41 m.

Figure 118. Predicted probability of over 10 % cover of bladder wrack (Fucus vesiculosus). The predicted area is restricted to a maximum depth of 41 m.

Figure 119. Predicted probability of over 25 % cover of bladder wrack (Fucus vesiculosus). The predicted area is restricted to a maximum depth of 41 m.

Figure 120. Predicted probability of over 50 % cover of bladder wrack (Fucus vesiculosus). The predicted area is restricted to a maximum depth of 41 m.

Figure 121. Predicted probability of presence of the red alga species Coccotylus truncatus/Phyllophora pseudoceranoides. The predicted area is restricted to a maximum depth of 41 m.

Figure 122. Predicted probability of presence of filamentous red algae. The predicted area is restricted to a maximum depth of 41 m.

Figure 123. Predicted probability of presence of the red alga Furcellaria lumbricalis. The predicted area is restricted to a maximum depth of 41 m.

Figure 124. Predicted probability of over 10 % cover of the red alga Furcellaria lumbricalis. The predicted area is restricted to a maximum depth of 41 m.

Figure 125. Predicted probability of over 25 % cover of the red alga Furcellaria lumbricalis. The predicted area is restricted to a maximum depth of 41 m.

Figure 126. Predicted probability of presence of perennial red algae. The predicted area is restricted to a maximum depth of 41 m.

Figure 127. Predicted probability of presence of perennial macroalgae. The predicted area is restricted to a maximum depth of 41 m.

Figure 128. Predicted probability of presence of the vascular plant Ceratophyllum demersum. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 129. Predicted probability of presence of high submerged vascular plants. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 130. Predicted probability of over 10 % cover of high submerged vascular plants. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 131. Predicted probability of over 25 % cover of high submerged vascular plants. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 132. Predicted probability of presence of the vascular plant Myriophyllum spicatum. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 133. Predicted probability of over 10 % cover of the vascular plant Myriophyllum spicatum. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 134. Predicted probability of presence of the vascular plant genus Ruppia spp.. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 135. Predicted probability of presence of the vascular plant Stuckenia pectinata. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 136. Predicted probability of over 10 % cover of the vascular plant Stuckenia pectinata. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 137. Predicted probability of over 25 % cover of the vascular plant Stuckenia pectinata. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 138. Predicted probability of presence of the vascular plant Zannichellia palustris. The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 139. Predicted probability of presence of common eelgrass (Zostera marina). The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 140. Predicted probability of over 10 % cover of common eelgrass (Zostera marina). The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 141. Predicted probability of over 25 % cover of common eelgrass (Zostera marina). The predicted area is restricted to the range of the hydrografical layers from the HOME-model.

Figure 142. Predicted probability of presence of blue mussel (Mytilus edulis). The predicted area is restricted to a maximum depth of 41 m.

Figure 143. Predicted probability of over 10 % cover of blue mussel (Mytilus edulis). The predicted area is restricted to a maximum depth of 41 m.

Figure 144. Predicted probability of over 25 % cover of blue mussel (Mytilus edulis). The predicted area is restricted to a maximum depth of 41 m.

Benthic animals - predicted probability of presence

Predicted probability of presence of benthic animals is presented within the groups ringed worms (Annelida, includes polychaetes), arthropods, mollusks and other.

	Fig.	Name	Cover %	File name
Ringed worms	145	Bylaides sarsi	> 0	AgB MARMONI K Bylgides sarsi PA
	146	Hediste diversicolor	> 0	AqB_MARMONI_K_Hediste_diversicolor_PA
	147	Hediste diversicolor	≥ 100	AqB_MARMONI_K_Hediste_diversicolor_PA100
	148	Marenzelleria spp.	> 0	AqB_MARMONI_K_Marenzelleria_spp_PA
	149	Marenzelleria spp.	≥ 100	AqB_MARMONI_K_Marenzelleria_spp_PA100
	150	Marenzelleria spp.	≥ 300	AqB_MARMONI_K_Marenzelleria_spp_PA300
	151	Oligochaeta	> 0	AqB_MARMONI_K_Oligochaeta_PA
	152	Spionidae	> 0	AqB_MARMONI_K_Spionidae_PA
	153	Spionidae	≥ 500	AqB_MARMONI_K_Spionidae_PA500
Arthropods	154	Asellus aquaticus	> 0	AqB_MARMONI_K_Asellus_aquaticus_PA
	155	Bathyporeia pilosa	> 0	AqB_MARMONI_K_Bathyporeia_pilosa_PA
	156	Bathyporeia pilosa	≥ 100	AqB_MARMONI_K_Bathyporeia_pilosa_PA100
	157	Chironomidae	> 0	AqB_MARMONI_K_Chironomidae_PA
	158	Chironomidae	≥ 100	AqB_MARMONI_K_Chironomidae_PA100
	159	Corophium volutator	≥ 100	AgB_MARMONI_K_Corophium_volutator_PA100
	160	Diastylis rathkei	≥ 100	AqB_MARMONI_K_Diastylis_rathkei_PA100
	161	Monoporeia affinis	> 0	AqB_MARMONI_K_Monoporeia_affinis_PA
	162	Monoporeia affinis	≥ 100	AqB_MARMONI_K_Monoporeia_affinis_PA100
	163	Monoporeia affinis/ Ponto- poreia femorata	> 0	AqB_MARMONI_K_Monoporeia_Pontoporeia_PA
	164	Monoporeia affinis/ Ponto- poreia femorata	≥ 100	AqB_MARMONI_K_Monoporeia_Pontoporeia_PA100
	165	Monoporeia affinis/ Ponto- poreia femorata	≥ 300	AqB_MARMONI_K_Monoporeia_Pontoporeia_PA300
	166	Pontoporeia femorata	> 0	AqB_MARMONI_K_Pontoporeia_femorata_PA
	167	Saduria entomon	> 0	AqB_MARMONI_K_Saduria_entomon_PA
Mollusks	168	Cerastoderma spp.	> 0	AqB_MARMONI_K_Cerastoderma_spp_PA
	169	Cerastoderma spp.	≥ 100	AqB_MARMONI_K_Cerastoderma_spp_PA100
	170	Hydrobiidae	> 0	AqB_MARMONI_K_Hydrobiidae_PA
	171	Macoma balthica	> 0	AqB_MARMONI_K_Macoma_balthica_PA
	172	Macoma balthica	≥ 100	AqB_MARMONI_K_Macoma_balthica_PA100
	173	Macoma balthica	≥ 500	AqB_MARMONI_K_Macoma_balthica_PA 500
Other	174	Halicryptus spinulosus	> 0	AqB_MARMONI_K_Halicryptus_spinulosus_PA
*Free to distribute according to the Swedish Maritime Administration (reference 14-01373)				

Figure 145. Predicted probability of presence of the polychaete Bylgides sarsi, based on inventory data from bottom grabs.

Figure 146. Predicted probability of presence of the polychaete Hediste diversicolor, based on inventory data from bottom grabs.

Figure 147. Predicted probability of over 100 individuals/m² of the polychaete Hediste diversicolor, based on inventory data from bottom grabs.

Figure 148. Predicted probability of presence of the polychaete Marenzelleria spp., based on inventory data from bottom grabs.

Figure 149. Predicted probability of over 100 individuals/m² of the polychaete Marenzelleria spp., based on inventory data from bottom grabs.

Figure 150. Predicted probability of over 300 individuals/m² of the polychaete Marenzelleria spp., based on inventory data from bottom grabs.

Figure 151. Predicted probability of presence of oligochaetes, based on inventory data from bottom grabs.

Figure 152. Predicted probability of presence of the polychaete family Spionidae, based on inventory data from bottom grabs.

Figure 153. Predicted probability of over 500 individuals/m² of the polychaete family Spionidae, based on inventory data from bottom grabs.

Figure 154. Predicted probability of presence of the arthropod Asellus aquaticus, based on inventory data from bottom grabs.

Figure 155. Predicted probability of presence of the arthropod Bathyporeia pilosa, based on inventory data from bottom grabs.

Figure 156. Predicted probability of over 100 individuals/m² of the arthropod Bathyporeia pilosa, based on inventory data from bottom grabs.

Figure 157. Predicted probability of presence of the arthropod family Chironomidae, based on inventory data from bottom grabs.

Figure 158. Predicted probability of over 100 individuals/m² of the arthropod family Chironomidae, based on inventory data from bottom grabs.

Figure 159. Predicted probability of over 100 individuals/m² of the arthropod Corophium volutator, based on inventory data from bottom grabs.

Figure 160. Predicted probability of over 100 individuals/m² of the arthropod Diastylis rathkei, based on inventory data from bottom grabs.

Figure 161. Predicted probability of presence of the arthropod Monoporeia affinis, based on inventory data from bottom grabs.

Figure 162. Predicted probability of over 100 individuals/m² of the arthropod Monoporeia affinis, based on inventory data from bottom grabs.

Figure 163. Predicted probability of presence of the arthropods Monoporeia affinis and Pontoporeia femorata, based on inventory data from bottom grabs.

Figure 164. Predicted probability of over 100 individuals/m² of the arthropods Monoporeia affinis and Pontoporeia femorata, based on inventory data from bottom grabs.

Figure 165. Predicted probability of over 300 individuals/m² of the arthropods Monoporeia affinis and Pontoporeia femorata, based on inventory data from bottom grabs.

Figure 166. Predicted probability of presence of the arthropod Pontoporeia femorata, based on inventory data from bottom grabs.

Figure 167. Predicted probability of presence of the isopod Saduria entomon, based on inventory data from bottom grabs.

Figure 168. Predicted probability of presence of the bivalve genus Cerastoderma spp., based on inventory data from bottom grabs.

Figure 169. Predicted probability of over 100 individuals/m² of the bivalve genus Cerastoderma spp., based on inventory data from bottom grabs.

Figure 170. Predicted probability of presence of mud snails (Hydrobiidae), based on inventory data from bottom grabs.

Figure 171. Predicted probability of presence of baltic clam (Macoma baltica), based on inventory data from bottom grabs.

Figure 172. Predicted probability of over 100 individuals/m² of baltic clam (Macoma baltica), based on inventory data from bottom grabs.

Figure 173. Predicted probability of over 500 individuals/m² of baltic clam (Macoma baltica), based on inventory data from bottom grabs.

Figure 174. Predicted probability of presence of Halicryptus spinulosus, based on inventory data from bottom grabs.

Benthic animals – predicted abundance

Predicted abundance of benthic animals is presented within the groups polychaetes, arthropods and mollusks. Maps showing predicted abundance of total number of individuals and taxa, and filtration capacity for hard and soft bottoms are also presented.

Fig.	Name	Cover %	File name		
175	Chironomidae	individuals/m ²	AqB_MARMONI_K_Chironomidae_abundance		
176	Marenzelleria spp.	individuals/m ²	AqB_MARMONI_K_Marenzelleria_spp_abundance		
177	Pontoporeia femorata	individuals/m ²	AqB_MARMONI_K_Pontoporeia_femorata_abundance		
	Monoporeia affinis/ Pontoporeia	individuals/m ²	AqB_MARMONI_K_Monoporeia_Pontoporeia_abundance		
178	femorata				
179	Cerastoderma spp.	individuals/m ²	AqB_MARMONI_K_Cerastoderma_spp_abundance		
180	Hydrobiidae	individuals/m ²	AqB_MARMONI_K_Hydrobiidae_abundance		
181	Macoma balthica	individuals/m ²	AqB_MARMONI_K_Macoma_balthica_abundance		
182	Number of individuals	individuals/m ²	$\label{eq:additional} AqB_MARMONI_K_Number_of_individuals_abundance$		
183	Number of taxa	taxa/m ²	AqB_MARMONI_K_Number_of_taxa_abundance		
	Filtration capacity,	L/day*m ²	AqB_MARMONI_K_Filtration_capacity_hard		
184	soft bottom				
	Filtration capacity,	L/day*m ²	AqB_MARMONI_K_Filtration_capacity_soft		
185	hard bottom				
*Free to distribute according to the Swedish Maritime Administration (reference 14-01373)					

Figure 175. Predicted abundance of chironomids, based on inventory data from bottom grabs.

Figure 176. Predicted abundance of the polychaetes Marenzelleria spp., based on inventory data from bottom grabs.

Figure 177. Predicted abundance of the arthropod Pontoporeia femorata, based on inventory data from bottom grabs.

Figure 178. Predicted abundance of the arthropods Monoporeia affinis and Pontoporeia femorata, based on inventory data from bottom grabs.

Figure 179. Predicted abundance of the bivalve genus Cerastoderma spp., based on inventory data from bottom grabs.

Figure 180. Predicted abundance of mud snails (Hydrobiidae)., based on inventory data from bottom grabs.

Figure 181. Predicted abundance of the baltic clam (Macoma balthica), based on inventory data from bottom grabs.

Figure 182. Predicted total number of individuals, based on inventory data from bottom grabs.

Figure 183. Predicted number of taxa, based on inventory data from bottom grabs.

Figure 184. Predicted filtration capacity on soft bottom, based on inventory data from bottom grabs.

Figure 185. Predicted filtration capacity on hard bottom, based on inventory data from bottom grabs.

Young of the year fish and sticklebacks in coastal recruitment areas

Here, predicted probability of presence of coastal young of the year fish and sticklebacks is presented.

Fig.	Common name	Latin name	File name
186	Perch	Perca fluviatilis	AqB_MARMONI_K_Perca_fluviatilis_PA
187	Pike	Esox lucius	AqB_MARMONI_K_Esox_lucius_PA
188	Roach	Rutilus rutilus	AqB_MARMONI_K_Rutilus_rutilus_PA
189	Sticklebacks	Gasterosteus aculeatus/ Pungitus pungitus	AqB_MARMONI_K_Gasterosteus_Pungitius_PA

Figure 187. Predicted probability of presence of young of the year pike (Esox lucius) in coastal areas.

Figure 189. Predicted probability of presence of sticklebacks (Gasterosteus aculeatus/Pungitus pungitus) in coastal areas.

Pelagic fish and plankton

Here, maps over over predicted abundance of pelagic fish and plankton (including jellyfish) and predicted probability of presence of fish eating predatory fish are presented.

Fig.	Group	Description	File name
190	Small zooplankton	Acoustic index, log scale	AqB_MARMONI_K_Zooplankton_small_abundans
191	Large zooplankton	Acoustic index, log scale	AqB_MARMONI_K_Zooplankton_large_abundans
192	Jellyfish	Acoustic index, log scale	AqB_MARMONI_K_Aurelia_aurita_abundans
193	Fish 2-6 cm	Number/km ²	AqB_MARMONI_K_Pelagic_fish_2_6_cm_abundans
194	Fish 7-13 cm	Number/km ²	AqB_MARMONI_K_Pelagic_fish_7_13_cm_abundans
195	Fish 14.5-25 cm	Number/km ²	AqB_MARMONI_K_Pelagic_fish_14_25_cm_abundans
196	Fish 39-80.5 cm	Probability of presence	AqB_MARMONI_K_Pelagic_fish_39_81_cm_PA

Figure 190. Predicted abundance of small zooplankton (0.2-2 mm, ex. large rotifers, water fleas, copepods and different planktonic larvae).

Figure 191. Predicted abundance of large zooplankton (>2 mm, mainly opossum shrimps).

Figure 192. Predicted abundance of common jellyfish (Aurelia aurita).

Figure 193. Predicted abundance of pelagic fish within the size class 2-6 cm. The class is dominated by sticklebacks, young of the year herring and sprat, and sometimes also includes common goby and sand goby.

Figure 194. Predicted abundance of pelagic fish within the size class 7-13 cm. The class is dominated by sprat.

Figure 195. Predicted abundance of pelagic fish within the size class 14.5-25 cm. The class is dominated by adult herring.

Figure 196. Predicted probability of presence of pelagic fish within the size class 39-80.5 cm. The class is dominated by fish eating predators such as cod, salmon and sea trout