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SUMMARY 
 
Maps of species and habitats have become an important tool for managing the marine 
environment and detailed knowledge on the distribution of spawning grounds of commercially 
important fish species is a vital part of an ecosystem based approach to fisheries management. In 
this study, GIS layers of environmental variables such as depth, substrate, terrain roughness, 
aspect and wave exposure were prepared for the Lithuanian coast at two different levels of 
detail. By using a maximum-entropy modelling approach, using the program MaxEnt, the GIS 
layers of produced environmental variables were used to predict herring (Clupea harengus) 
spawning grounds on the Lithuanian coast (50 m resolution). Higher resolution data was 
available for a smaller sub-area of the coast, near Palanga, and was used separately to model 
herring spawning grounds at an elevated level of detail (25 m resolution). In the sub-area, the 
detailed bathymetry also allowed the construction of more accurate depth derived 
environmental layers, such as terrain roughness index. The sub-area modelling resulted in a 
more reliable prediction of potential herring spawning grounds which allowed a detailed 
assessment of which environmental characteristics that are important for herring spawning in 
the Lithuanian coast. 
 
Although this study was constrained by a limited spatial distribution of the occurrence of 
herring spawning ground data and variable quality of the predictor variables, the results are 
expected to be ecologically sound and may hence provide valuable support for marine spatial 
planning.
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INTRODUCTION 
 
Knowledge on the spatial distribution of ecologically important features is a key tool in order to 
effectively manage marine resources and apply an integrated ecosystem based management. In 
this context geographic information systems (GIS) have been shown to be an important tool for 
both research and management as it provides the basis for modelling and displaying the 
distribution of species and habitats (Guisan and Zimmerman 2000). By relating species 
distributions to environmental conditions, researchers may infer both ecological conclusions as 
well as predict species and habitat distributions across seascapes (Elith and Leathwick 2009). 
Spatial distribution modelling using presence-only methods has proven highly useful for certain 
types of data (Elith et al 2006). One of the most used, and recommended, modelling tools for 
presence only data is the program MaxEnt. 
 
The Baltic Sea herring (Clupea harengus) supports an economically and culturally important 
fishery and is a critical component of the Baltic Sea ecosystem. Baltic Sea herring is capable of 
restructuring lower trophic levels (Hansson et al. 1990; Arrhenius and Hansson 1993), thus 
influencing nutrient dynamics (Hjerne and Hansson 2002) Together with cod (Gadus morhua) 
and sprat (Sprattus sprattus), herring is an important component of the Baltic Sea off-shore 
food-web (Sparholt 1994; Köster and Möllmann 2000; Harvey et al. 2003). 
 
In order to have a sustainable use of fish stocks, it is crucial to ensure a high level of 
recruitment. An essential factor for successful fish recruitment is that suitable spawning habitats 
are available (Mumby et al 2004). Although herring is an important fish species in the Baltic 
Sea, many aspects related to its spawning grounds are poorly known. Thus, by identifying 
important spawning habitats, their importance for population size can be assessed and possibly 
protected to ensure long-term recruitment success. The present study was carried out in order 
to produce a map of potential herring spawning grounds in Lithuanian coastal waters.  
 
This study was carried out within the EEA and Norwegian Financial Mechanism Programme 
project LT0047 “A system for the sustainable management of Lithuanian marine resources using 
novel surveillance, modelling tools and an ecosystem approach”.  
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MATERIALS AND METHODS 
 
Geographical area and data on herring spawning
The area of study was limited to the Lithuanian exclusive economic zone. 
spawning was collected by the 
mainly during 2009 and 2010 using diving censuses.
Figure 1 and Table 1). At each visited location the depth, position and whether herring roe were 
observed or not were noted. 
Herring roe were observed 
at a total of 57 locations. 
Data collection was limited 
to the northern part of the 
coast as this is the region 
where herring spawning 
mainly have been observed 
previously. 
 
 

 
Figure 1. Map over the Lithuanian coast showing the 

 
 

 

Geographical area and data on herring spawning 
The area of study was limited to the Lithuanian exclusive economic zone. 
spawning was collected by the Coastal Research and Planning Institute, 
mainly during 2009 and 2010 using diving censuses. A total of 105 locations were visited (see 

). At each visited location the depth, position and whether herring roe were 

Map over the Lithuanian coast showing the EEZ, sampled locations, 5 m depth isobars and geology
multibeam data is enclosed in green outline 

Table 1. Data on the diving censuses. N.a. - not available. 

 Start 

date 

End 

date 

Number of 

locations 

Pre 2009 n.a. n.a. 5 

2009 season 7 April 29 April 59 

2010 season 19 April 7 May 41 

9 

The area of study was limited to the Lithuanian exclusive economic zone. Data on herring 
, Klaipeda University, 

locations were visited (see 
). At each visited location the depth, position and whether herring roe were 

 

, 5 m depth isobars and geology. A sub-area with 

Min depth 

(m) 

Max depth 

(m) 

6 11 

4 14 

3 10 
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Development of GIS predictor variable layers 
Open source software was used for the development of GIS layers: GRASS 6.4.0 
(GRASS Development Team 2010) and SAGA API 2.0.6 (Conrad 2006). The projection WGS 
84 / UTM zone 34N was used throughout the study.  
 
Different sources of environmental data were used as input for the creation of GIS predictor 
variable layers. Grids with a spatial resolution of 50 m were created for the whole Lithuanian 
coast. More detailed bathymetry was available for a sub-area of the coast, where multibeam 
measurements have been performed (see Figure 1). For the multibeam sub-area, grids with a 
spatial resolution of 25 m were also created.  
 
The distributions of all continuous environmental variables were plotted in R to see if they were 
normally distributed. Continuous variables that were non-normally distributed were 
transformed if it was possible to significantly improve their distribution towards normality. 
 
Bathymetry was available for the whole Lithuanian EEZ in GIS layers as lines (isobars) with 5 
m depth interval.  In order to calculate a continuous grid with depth for the Lithuanian EEZ, 
the following procedure was used: (1) evenly distributed points were added to all lines 
containing the depth values from the isobars, utilizing the “Points from lines” module in SAGA 
2.0.6. The distance between the points were chosen so that the smallest features of the isobars 
would be represented. (2) the final depth grid was interpolated from the created points using 
the SAGA “Triangulation module”. The depth grid was not validated with independent data as 
none were available. 
 
The developed depth grid was used as input for the SAGA “Standard terrain analysis” module in 
order to calculate curvature (planar and profile curvature), slope and aspect (later transformed 
to eastness [sin aspect] and northness [cos aspect] using the r.mapcalculator in GRASS). Two 
ruggedness measures were also calculated in SAGA using the modules “Terrain ruggedness 
index” (Riley, De Gloria et al. 1999) and “Vector ruggedness measure”. 
Data on the geology of the Lithuanian EEZ was available as polygons containing substrate 
classes. The polygons were converted into grids in GRASS using the v.to.rast function. 
 
For a sub-area of the coast, near Palanga, data were also available from multibeam 
measurements as points with about 5-10 m interval. A continuous grid at 25 m resolution for 
the multibeam area was created using the SAGA “Triangulation module”. The detailed 
bathymetry allowed the creation of more accurate topography related predictor layers at finer 

scale than was possible for 
the whole coastal area. The 
developed depth grid was 
used to calculate curvature 
(planar and profile), 
curvature index, eastness 
(sin aspect), northness (cos 
aspect), slope, terrain 
roughness index (75, 150 
and 250 m window), 
vertical terrain roughness 
index and protection index 
using the SAGA modules 
“Standard terrain analysis”, 

 

Table 2. Input data for the environmental predictor layers. 

 
Variable Type Resolution (m) Source 

Whole coast Substrate Vector  Klaipeda 

 
Depth 

Vector 
(isobars) 

5 m interval Klaipeda 

 Wave exposure Grid 25 AquaBiota 

Sub-area Substrate 
interpretation 
(multibeam 
backscatter) 

Vector < 10 Klaipeda 

 Depth (multibeam 
point 
measurements) 

Vector < 10 Klaipeda 



 

“Terrain ruggedness index” and “Vector ruggedness measure”
(Windward/Leeward index) was used to create a grid that describe
exposure/shelter to wave energy coming from west by using the depth grid as elevation input 
and a western wind direction. As wind effect is a somewhat confusing term for this predictor 
layer, the grid is called “Western wave energy exposure index

 

 
Wave exposure at the sea surface 
resolution of 25 m (Wijkmark and M. 2010) by 
(Isæus 2004). The SWM is calculated using wind data from land and fetch length (i.e. 
distance of open water over which the wind can 
the sea floor was calculated
SWM×exp((((22×((9.82)/SWM
more details. A summary of the 
layers is presented in Table 2. 
 

Predictor variable selection 
To test for correlations among environmental predictor variables we used 
(R development core team 2011) 
degree of collinearity (Figure 2

 
Environmental variables that are highly correlated 
problematic as it may result in model building
results. Therefore, smaller subsets of non
layers for the modelling. For correlated variables, selection was based on ecological 
Additionally, predictor variables that only contributed 
knife importance, were also removed, whereupon the model was re
for a summary of the layers used in

Figure 2. A cluster representation of collinearity
predictor layers for the whole coast model.

gedness index” and “Vector ruggedness measure”. The SAGA module Wind effect 
(Windward/Leeward index) was used to create a grid that describe
exposure/shelter to wave energy coming from west by using the depth grid as elevation input 

stern wind direction. As wind effect is a somewhat confusing term for this predictor 
Western wave energy exposure index” in this report.

exposure at the sea surface had been previously calculated for Lithuanian
(Wijkmark and M. 2010) by using the Simplified Wave Model method SWM

The SWM is calculated using wind data from land and fetch length (i.e. 
which the wind can act and develop waves). The wave exposure 

the sea floor was calculated in GRASS with r.mapcalc by using the formula 
SWM)^(1/3))2)/9.8)×(-depth)) see Bekkby, Isachsen et al. (2008)

the environmental data that were used as input for the predictor 
 

 
To test for correlations among environmental predictor variables we used 

team 2011) and the Hmisc package to plot a cluster representation 
Figure 2 and 3). 

Environmental variables that are highly correlated may be used in the same model
problematic as it may result in model building bias as well as difficulties in interpreting the 

. Therefore, smaller subsets of non-correlated variables were used as potential predictor 
For correlated variables, selection was based on ecological 
ables that only contributed to a very small degree

were also removed, whereupon the model was re-run. See 
for a summary of the layers used in the final model. 

. A cluster representation of collinearity between 
predictor layers for the whole coast model. 

Figure 3. A cluster representation of collinearity between 
predictor layers for the Sub
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The SAGA module Wind effect 
(Windward/Leeward index) was used to create a grid that described the degree of 
exposure/shelter to wave energy coming from west by using the depth grid as elevation input 

stern wind direction. As wind effect is a somewhat confusing term for this predictor 
” in this report. 

 

Lithuanian waters with a 
using the Simplified Wave Model method SWM 

The SWM is calculated using wind data from land and fetch length (i.e. the 
waves). The wave exposure at 

in GRASS with r.mapcalc by using the formula 
see Bekkby, Isachsen et al. (2008) for 

sed as input for the predictor 

To test for correlations among environmental predictor variables we used R version 2.12.1 
luster representation of the 

be used in the same model but is 
difficulties in interpreting the 

correlated variables were used as potential predictor 
For correlated variables, selection was based on ecological importance. 

a very small degree, based on jack-
See Table 3 (page 12) 

. A cluster representation of collinearity between 
Sub-area model. 
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Modelling and probability predictions 
The program MaxEnt, version 3.3.3e, was used to create probability maps of potential herring 
spawning habitats (Phillips, Anderson et al. 2006; Elith et al. 2011). All observations on herring 
spawning locations (presences) from the data were used as input for a GIS vector layer 
containing the coordinates for all points. The points were converted into raster layers (one with 
25 m resolution and one with 50 m resolution) by using r.stats and r.out.ascii in GRASS, and 
thereafter edited with a text editor for input into MaxEnt. Some presence points were located 
in the same grid cell, leading to a final number of 39 presence localities for the whole coast 
model and 36 for the sub-area model. 
 

Table 3. The predictor layers used in the final models. 

 
Variable Type Resolution (m) Produced in 

Whole coast Depth corrected SWM Continuous 50 WaveImpact & GRASS  

 Substrate Categorical 50 GRASS 

 Terrain Roughness index Continuous 50 SAGA 

Sub-area Terrain roughness index (250 m 
calculation window) 

Continuous 25 SAGA 

 Western wave energy exposure index Continuous 25 SAGA 

 Depth Continuous 25 GRASS 

 SWM Continuous 25 WaveImpact 

 Compass direction (N, E, S, W) Categorical 25 GRASS 

 Substrate (multibeam interpretation) Categorical 25 GRASS 

 
The model for the whole coast was reduced in size to the part of the coast where herring 
spawning is known to occur. The boundary for the whole coast model was N, 6213795; S, 
6175445; W, 498551; E, 505751 (in WGS84 long 20°58’36” – 21°5’29”, lat 56°4’9” - 
55°43’28”). The restriction of the model to this area was made in order to not inflate the model 
performance (due to including large areas with very low probability for presence) (VanDerWal, 
Shoo et al. 2009). The sub-area model was restricted to the area where multibeam 
measurements had been made. MaxEnt was run with the default settings with the exceptions 
that 10 replicate bootstrap runs (random selection of test data with replacement) were 
performed using 30 % of the data for model testing in each bootstrap run. 
 
The correlation between the two models was compared in the overlapping area using the r.covar 
function in GRASS. The correlation between the two models was 0.30. From this it was clear 
that the whole coast model greatly overpredicted the probability for herring spawning habitats, 
compared to the more detailed sub-area model (approximately 4.74 times higher). Therefore, 
the difference in prediction for the two models (4.74) was used to correct the predictions for 
the whole coast model to give comparable probability predictions between the two models.. 
 
The 3D image of the sub-area model was created in GRASS using the nviz tool and the depth 
layer derived from multibeam measurements and the predicted distribution map from MaxEnt. 
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Figure 4. Distribution of environmental variables at sampled locations compared to 
the whole area for the whole coast model. Black points denote median, boxes 1st 

and 3rd quantile and error bars maximum and minimum. 

Analyses of stratification in the 
sampled points 
 
In order to analyse potential bias due 
to stratification in the collection of 
samples the following procedure was 
used: (1) the vector layer containing 
all visited locations was updated by 
sampling all predictor layers used in 
the models with the v.what.rast 
function in GRASS. (2) The 
attribute table was exported to 
Microsoft excel and the 
environmental variables were plotted 
in graphs. (3) Corresponding 
statistics for the whole predictor 
layer was calculated using the 

r.univar function in GRASS. 
 
Boxplots were used for continuous 
variables and bars for categorical 
variables. The distribution of 
environmental variables at sampled 
locations compared to the whole 
area is shown in fig 4 for the large 
scale model and in Figure 5 for the 
sub-area model. 
 
The distribution of environmental 
variables at the sampled locations 
for the whole coast model shows 
that samples at relatively deep 
(Figure 4a), low depth corrected 
wave exposure (Figure 4b) and with 
a low or high terrain ruggedness 
index (Figure 4c) are slightly under-
representatively sampled. However, 
bedrock is considerably over-
representatively sampled for the 
whole coast area with 88 % of the 
sampling effort, compared to its 
extent of 51 % in the modelling 
area. 
 
The distribution of environmental 
variables at the sampled locations 
for the sub-area shows that samples 
with a low or very high terrain 
ruggedness index (Figure 5a) and 

Figure 5. Distribution of environmental variables at sampled locations 
compared to the whole area of the sub-model. Black points denote median, 

boxes 1st and 3rd quantile and error bars maximum and minimum. 
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Western wave energy exposure index are slightly under-representatively sampled. However, the 
substrate “stones” is over-representatively sampled for the sub-area with 94 % of the sampling 
effort, compared to its extent of 69 % in the modelling area (Figure 5e). 
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RESULTS 
 
The distribution of potential herring spawning habitats for the whole coast model was best 
explained by a model including depth corrected SWM, substrate and terrain ruggedness index 
(see Table 4). The model was stable, with an average training AUC of 0.944
deviation of 0.01 and an average test AUC of 0.942 with a standard deviation of 0.01
in MaxEnt is calculated from created pseudo
model is shown in Figure 6. 

Figure 6. The modelled 

The distribution of potential herring spawning habitats for the whole coast model was best 
explained by a model including depth corrected SWM, substrate and terrain ruggedness index 

). The model was stable, with an average training AUC of 0.944
deviation of 0.01 and an average test AUC of 0.942 with a standard deviation of 0.01

calculated from created pseudo-absences. The predicted map for the whole coast 

The modelled probability for presence of Herring spawning habitat on the Northern part of 
the Lithuanian coast. 

The distribution of potential herring spawning habitats for the whole coast model was best 
explained by a model including depth corrected SWM, substrate and terrain ruggedness index 

). The model was stable, with an average training AUC of 0.944 with a standard 
deviation of 0.01 and an average test AUC of 0.942 with a standard deviation of 0.01. The AUC 

The predicted map for the whole coast 

 
probability for presence of Herring spawning habitat on the Northern part of 



 

The distribution of potential herring spawning habitats in the 
explained by a model including terrain roughness index, w
depth, SWM, compass direction and s
was stable, with an average training AUC of 0.954 with a standard deviation of 0.01
average test AUC of 0.934 with a standard deviatio
spawning habitats in the sub-area
presence and absence points is shown in the appendix (Figure 
additional tool for the evaluation of model performance and reliability
potential herring spawning grounds visualized in 3D, utilizing the available detailed bathymetry 
is shown in Fig 8. 

Figure 7. The modell

The distribution of potential herring spawning habitats in the sub-area
explained by a model including terrain roughness index, western wave energy exposure index

, SWM, compass direction and substrate (see Table 5). Based on bootstrap
was stable, with an average training AUC of 0.954 with a standard deviation of 0.01
average test AUC of 0.934 with a standard deviation of 0.03. The map with predicted herring 

area model is shown in Figure 7. This map but including plotted 
presence and absence points is shown in the appendix (Figure 10) and may serve as an 
additional tool for the evaluation of model performance and reliability. The same prediction of 
potential herring spawning grounds visualized in 3D, utilizing the available detailed bathymetry 

 

The modelled probability for presence of Herring spawning habitat in the sub
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area model was best 
nergy exposure index, 

Based on bootstrap-runs the model 
was stable, with an average training AUC of 0.954 with a standard deviation of 0.01 and an 

. The map with predicted herring 
model is shown in Figure 7. This map but including plotted 

and may serve as an 
. The same prediction of 

potential herring spawning grounds visualized in 3D, utilizing the available detailed bathymetry 

 

sub-area. 
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Figure 8. 3D visualization of the modelled probability for presence of Herring spawning habitat in the sub-area, made by draping the 

predicted map on a digital terrain model derived from the depth predictor layer. The importance of terrain features is clearly visible, with 
high predicted probability of herring spawning grounds in rugged terrain. 

 
 
Table 4. The contribution (importance) of the environmental 
variables in the whole coast model. 

 
Table 5. The contribution (importance) of the environmental 
variables in the sub-area model. 

 
The contributions (importance) of the 
environmental variables to the models are 
shown in Table 4 for the whole coast model 
and in Table 5 for the sub-area model. 
Response curves for the two models are 
shown in Figure 9 and 10, respectively. 
 

 
 

Figure 9. Average response curves for the whole coast model is 
shown in red. a) depth corrected SWM, b) substrate c) terrain 

ruggedness index. Standard deviation based on the 10 bootstrap 
runs is denoted in blue. 

Variable Contribution (%) 

Depth corrected SWM 66.2 

Substrate 28.0 

Terrain ruggedness index 5.8 

Variable Contribution (%) 

Terrain ruggedness index 34.8 

Western wave energy 
exposure index 

18.9 

Depth 16.2 

SWM 15.0 

Compass direction 9.2 

Substrate 5.8 
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Figure 9. Average response curves for the whole coast model are shown in red. a) terrain ruggedness index, b) western wave energy 
exposure index c) depth d) SWM (log transformed) e) compass direction f) substrate. Standard deviation is denoted in blue. 

  



 

 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSIONDISCUSSION 



 21 

DISCUSSION 
 
Due to the fact that no independent validation data was available for the study, the maps of 
predicted potential herring spawning habitat should be interpreted with caution. However, 
these spatial predictions of potential herring spawning grounds are ecologically sound in general 
and the model was stable, with relatively low variance among the bootstrap runs. They are 
useful as a guide for further studies of potential distribution of important herring recruitment 
areas in Lithuanian waters. However, it is important that the models are evaluated further in the 
future by using independent control data. 
 
The models of potential herring spawning grounds are based on data collected by divers and 
where they have observed herring roe directly. As some locations were visited during 
consecutive years and, in some cases, herring roe was observed in one of the years but not the 
other, not only spatial but also temporal variation is important. Additionally, spawning at some 
suitable spawning sites may also occur later than when they were visited by divers, since herring 
spawning at this latitude have been observed between March-June (Aneer 1989; Fey 2001; 
Krasovskaya 2002), longer than the sampling period of the diving census study (Table 1). Thus, 
the predicted probability maps give the relative probability for a diver of finding roe at a 
specific location given the conditions at the time of original sampling. The high temporal 
variation and the fact that it may be difficult to find herring roe while diving, suggest that a 
model which uses presence only data would be most suitable (Elith at al 2011). Presence-
absence type models normally perform better than presence only models as more data may be 
used, but are sensitive to the presence of false absences, which are likely to have occurred in our 
dataset. 
 
The whole coast model has a relatively low resolution, due to the lack of appropriate 
environmental variables that may function as suitable predictor layers. Despite this, the 
predicted map for the whole coast may give a broad overview on where suitable herring 
spawning grounds can be found. The response curves from the model (Figure 9) further indicate 
that herring spawning grounds are mainly occurring with an intermediate wave exposure, on 
hard substrate (bedrock) and in rugged terrain (Table 4 and Figure 9). These results are in 
agreement with Rajasilta et al. (1993) and Aneer’s (1989) studies in Finnish and Swedish 
archipelagos respectively, where herring spawning mostly occurs on hard substrate and/or 
vegetation shallower than 10 m. The importance of intermediate wave exposure for the model 
may have been affected by potential erosion of herring roe from sites with relatively high 
exposure, which are also shallower. Even if this would be the case, i.e. herring spawning do 
occur at locations with a high degree of exposure but is quickly eroded away; these sites would 
still be comprised of locations without herring roe – which is needed for successful hatching of 
larvae. The whole coast model has a relatively coarse resolution in the environmental predictor 
layers and predicts spatial patterns on a relatively coarse and large scale, compared to the sub-
area model. 
 
The sub-area model had a higher level of detail but was, naturally, limited to a much smaller 
area than the whole coast model. Despite this, the high level of detail in the bathymetry 
provided a way to investigate which terrain features that are related to herring spawning 
grounds. The response curves in the sub-area model indicate that the environmental 
characteristics related to suitable herring spawning grounds are: (1) Rugged terrain (2) an 
intermediate wave exposure and degree of shelter to West (3) locations not deeper than 10-14 
m (4) a slope facing either West or East (5) hard substrate. Considering depth and substrate, 
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these results are in agreement with Rajasilta et al. (1993) and Aneer’s (1989) studies in Finnish 
and Swedish archipelagos respectively, similar to the whole coast model results. The other 
environmental characteristics related to modelled spawning grounds (terrain ruggedness, slope 
and wave exposure) could potentially be explained by erosion of roe from exposed locations 
(potentially accumulating at sheltered sites) or that herring mainly spawn at somewhat 
sheltered locations in Lithuanian coastal waters.  
 
The high relative importance of topography related environmental variables in the sub-area 
model, where a detailed bathymetry was available, clearly shows the importance of access to 
high quality bathymetric data for marine spatial predictive modelling (compare Table 4 and 5). 
The importance of topography related environmental variables in order to predict where herring 
spawning occur is further highlighted by a high correlation (0.91) between the two different 
depth grids used in the models. This correlation indicates that solely differences in depth cannot 
explain the large discrepancy between the two models. Thus, it is more likely the poor spatial 
resolution of the bathymetry for the whole coast model, which does not allow calculations of 
topographic features at a finer scale, which has caused the low level of detail in the whole coast 
model. 
 
The analysis of potential stratification in the diving censuses (Fig 4 and 5) indicate that the 
models should be interpreted with caution. On the other hand, this mainly seems to be an issue 
for the substrate variable. The lack of samples from soft substrate locations makes it difficult to 
draw a conclusion from the models that herring spawning almost exclusively occur at hard 
substrates. However, the analysis of potential stratification in sampled substrates was made by 
sampling the environmental layers which are estimations of the reality and not always correct. 
The notes from the diving censuses (which include visual substrate classifications) show that the 
substrate predictor layer does not reflect the heterogeneity in substrate present in some grid 
cells (meaning that patches of sand were present in some cells classed as hard substrate). 
Furthermore, in the studies by Aneer (1989) and Rajasilta et al. (1993) herring spawning was 
found to be mainly related to hard substrates and it is plausible that herring spawning does not 
occur on soft substrate in Lithuanian waters. 
 
The two models in this study complement each other and may be used and interpreted in 
different ways. The whole coast model may provide more useful from a spatial planning 
perspective, and gives indications on a larger scale where important herring spawning grounds 
are located in Lithuania. The sub-area model on the other hand, shows that various terrain 
related features, at a level of detail not available for the whole Lithuanian coast, are important 
for herring spawning and may provide more accurate indication on which environmental 
characteristics that are associated with spawning site selection. 
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APPENDIX:  

Figure 10. Fishes denote locations with observed herring spawning grounds. Crosses denote visited locations w
spawning was observed (note that the absence locations have not been used 
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